Modbus Interface Manual
LP Series

Table of contents

1. Contact Information ................................................................. 3
2. Terms and Definitions ............................................................. 4
3. Introduction ............................................................................. 6
4. Safety Instructions ................................................................. 6
5. Quick Start-Up Guide ............................................................. 6
   5.1 Before You Begin .............................................................. 6
   5.2 Quick Start-Up Procedure ............................................... 6
6. Display Menu ........................................................................... 6
   6.1 Operation Modes ............................................................. 6
   6.1.1 Run Mode ................................................................. 6
   6.1.2 Program Mode .......................................................... 6
   6.2 Display Diagram .............................................................. 7
   6.3 Menu Structure ............................................................... 7
7. Alarms ..................................................................................... 7
8. Error Codes (Faults) ............................................................... 8
9. Modbus Interface ..................................................................... 8
   9.1 LP Dashboard ................................................................. 9
   9.1.1 Installing LP Dashboard .............................................. 9
   9.1.2 Home Screen ............................................................ 9
   9.1.3 Configuration ............................................................ 10
   9.1.4 Signal Settings .......................................................... 10
   9.1.5 Level Settings ........................................................... 10
   9.1.6 Temperature Settings ................................................ 11
   9.1.7 Volume Settings ......................................................... 12
   9.1.8 Flash Settings ............................................................ 12
   9.1.9 Save Settings ............................................................. 12
   9.2 Programming the Display ................................................. 13
   9.3 Modbus Function Codes .................................................. 12
   9.4 Modbus Register Maps .................................................... 24
   9.5 How Units are Used ........................................................ 28
   9.6 Modbus Register Map Notes ............................................ 28
   9.7 Formulas Used in Volume Calculation ............................... 29
1. Contact information

United States

General
Tel: +1-919-677-0100
Fax: +1-919-677-2343
E-mail: info.us@temposonics.com
http://www.temposonics.com

Mailing and shipping address
Temposonics, LLC
3001 Sheldon Drive
Cary, North Carolina, 27513, USA

Customer service
Tel: +1-800-633-7609
Fax: +1-800-498-4442
E-mail: info.us@temposonics.com

Technical support and applications
24 Hour Emergency Technical Support
Tel: +1-800-633-7609
e-mail: levelplus@temposonics.com

Germany

General
Tel.: +49-2351-9587-0
Fax: +49-2351-56491
e-mail: info.de@temposonics.com
http://www.temposonics.com

Mailing and shipping address
Temposonics GmbH & Co. KG
Auf dem Schüffel 9
D - 58513 Lüdenscheid, Germany

Technical support and applications
Tel.: +49-2351-9587-0
e-mail: info.de@temposonics.com
http://www.temposonics.com
2. Terms and definitions

6A Heavy Oils
‘Generalized Crude Oils’, Correction of Volume to 60 °F against API Gravity.

6B Light Oils
‘Generalized Products’, Correction of Volume to 60 °F against API Gravity.

6C Chemical
‘Volume Correction Factors (VCF)’ for individual and special applications, volume correction to 60 °F against thermal expansion coefficients.

6C Mod
An adjustable temperature reference for defining VCF.

A

API Gravity
The measure of how heavy or light a petroleum liquid is compared to water. Allowable values are 0 to 100 degrees API for (6A) and 0 to 85 degrees API for (6B).

D

DDA
‘Direct Digital Access’ – The proprietary digital protocol developed by MTS for use in intrinsically safe areas.

Density
Mass divided by the volume of an object at a specific temperature. The density value should be entered as lb / cu. ft..

E

Explosion proof
Type of protection based on enclosure in which the parts which can ignite an explosive gas atmosphere are placed within, and which can withstand the pressure developed during an internal explosion of an explosive mixture, and which prevents the transmission of the explosion to the explosive gas atmosphere surrounding the enclosure.

F

Flameproof
Type of protection based on enclosure in which the parts which can ignite an explosive gas atmosphere are placed within and which can withstand the pressure developed during an internal explosion of an explosive mixture, and which prevents the transmission of the explosion to the explosive gas atmosphere surrounding the enclosure.

FOUNDATION™ fieldbus
An all digital, serial, two-way communications system that serves as the base-level network in a plant or factory automation environment. Developed and administered by the fieldbus FOUNDATION™.

G

GOVI
‘Gross Observed Volume of the Interface’ – The total volume of the tank occupied by the interface liquid. The GOVI is only given when measuring two liquids and is calculated by subtracting the volume of the product from the total volume of liquid in the tank (GOVT – GOVP).

GOVP
‘Gross Observed Volume of the Product’ – The total volume of the tank occupied by the product liquid. When measuring only one liquid, it is also the total volume of liquid in the tank (GOVT). When measuring two liquids it is the total volume of liquid in the tank minus the volume of the interface liquid (GOVT – GOVI).

GOVT
‘Total Gross Observed Volume’ – The total volume of liquid in the tank. When measuring only one liquid it is equal to the volume of the product (GOVP). When measuring two liquids it is equal to the volume of the product and interface liquids (GOVP + GOVI).

GOVU
‘Gross Observed Volume Ullage’ – the difference in volume between the working capacity of a tank and the total volume in the tank (Working Capacity – GOVT).

H

HART®
A Bidirectional communication protocol that provides data access between intelligent field instruments and host systems.

I

Interface
Noun. The measurement of the level of one liquid when that liquid is below another liquid.

Interface
Adj.: The Software Graphical User Interface (GUI) that allows the user to access software protocols (HART, DDA, MODBUS).

Intrinsic safety
‘Intrinsically safe’ – Type of protection based on the restriction of electrical energy within apparatus of interconnecting wiring exposed to potentially explosive atmosphere to a level below that which can cause ignition by either sparking or heating effects.
Mass
The property of a body that causes it to have weight in a gravitational field, calculated by density at the reference temperature multiplied by the volume correction factor \( (\text{Density} \times \text{VCF}) \).

**MODBUS**
A serial communications protocol published by Modicon in 1979 for use with its programmable logic controllers (PLCs). It has become a de facto standard communications protocol in industry, and is now the most commonly available means of connecting industrial electronic devices.

NEMA Type 4X
A product Enclosure intended for indoor or outdoor use primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, and hose-directed water; and to be undamaged by the formation of ice on the enclosure. They are not intended to provide protection against conditions such as internal condensation or internal icing.

NPT
U.S. standard defining tapered pipe threads used to join pipes and fittings.

NSVP
‘Net Standard Volume of the Product’ – The temperature corrected volume for the product liquid in the tank, requires the transmitter to be ordered with temperature measurement capabilities. The NSVP is calculated by multiplying the volume of the product liquid by a volume correction factor based on temperature \( (\text{GOVP} \times \text{VCF}) \).

Reference Temperature
The temperature at which the density measurement is given, the allowable values are 32 °F to 150 °F (0 °C to 66 °C).

Specific Gravity
The density ratio of a liquid to the density of water at the same conditions.

Sphere Radius
The internal radius of the sphere that contains the liquid, the value is used to calculate the volume along with the Sphere Offset.

Sphere Offset
An offset value that accounts for additional volume in a sphere from non-uniform sphere geometry, the value is used to calculate the volume along with the Sphere Radius.

**Strap Table**
A table of measurement correlating the height of a vessel to the volume that is contained at that height. The transmitter can contain up to 100 points.

**TEC**
‘Thermal Expansion Coefficient’ - a value correlating the change in temperature for an object with the change in its volume. Allowable values are 270.0 to 930.0. TEC units are in 10 E-6/Deg F.

**Temperature Correction Method**
One of five product correction methods used to correct the product volume in the tank due to changes in temperature from 60 °F including \( 6A, 6B, 6C, 6C \) Mod, and Custom Table.

**Volume Calculation Mode**
One of two methods use to calculate volume measurements from level measurements, including Sphere and Strap Table.

**VCF**
‘Volume Correction Factor’ – A table of measurements correlating temperature points with correction factors for the liquids expansion/contraction. The transmitter can contain up to 50 points.

**Working Capacity**
The maximum volume of liquid that the user desires for their vessel to hold, typically 80% of the vessels maximum volume before overfill.
3. Introduction

3.1 Purpose and use of this manual

Before starting the operation of the equipment read this documentation thoroughly and follow the safety information.

The content of this technical documentation and of its various annexes is intended to provide information on mounting, installation and commissioning by qualified service personnel according to IEC 60079-14 and/or MTS trained service technicians and local regulations.

3.2 Used symbols and warnings

Warnings are intended for your personal safety and for avoidance of damage to the described product or connected devices. In this documentation, safety information and warnings to avoid dangers that might affect the life and health of personnel or cause material damage are highlighted by the preceding pictogram, which is defined below.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>This symbol is used to point to situations that may lead to material damage and/or personal injury.</td>
</tr>
</tbody>
</table>

4. Safety instructions

4.1 Intended use

The purpose of this document is to provide detailed information on the protocol interface. All safety related information is in the product specific operation manual. Consult the operation manual before connecting to the level transmitter.

5. Quick start-up guide

5.1 Before you begin

Note:

You must use a RS-485 converter with “Send Data Control” and the LP Dashboard to ensure proper operation.

Example:
RS-485 to USB, MTS 380114

5.2 Quick start-up procedure

1. Connect +24 Vdc to terminals.
2. Connect data lines to terminals.
3. Connect the PC (or other device) to data lines.
   (If you are using a PC, use a RS-485 to USB converter. See Note above for more information.)
4. Turn on power to the transmitter.
5. Start the LP Dashboard. Select Com Port and Address. Factory default address is ‘247’ for Modbus.

6. Change the address to one that is suitable for the installation network.
7. Verify proper operation of product, interface floats, and/or temperature.
8. Turn off power to the transmitter.
9. Remove data lines.
10. Install the transmitter into the vessel (see Operation Manual).
11. Reconnect power and data lines.
12. Calibrate current tank level using setup software (optional).
13. Verify communications with the host system.

6. Display Menu

All LP-Series liquid level transmitters are shipped with a Stylus (MTS Part # 404108) to be used for manipulating the display. For single and dual cavity housings, the Stylus is designed to allow for programming of the unit without removing the housing. When using the Stylus make sure to align the Stylus with the shape outline around the buttons in the same orientation. Failure to correctly align the Stylus can cause the display to not function properly.

6.1 Operation Modes

The LP Series level transmitter runs in one of the following modes of operation. You can use these modes to calibrate and set up various operating parameters.

6.1.1 Run Mode

Run mode is the primary mode of operation. This mode will perform measurements, display data, and respond to Modbus commands.
6.1.2 Program Mode

Program mode is the primary mode for commissioning and troubleshooting the level transmitter. The full menu and available functions are shown in section 6.3 Menu Structure. To enter program mode use the Stylus and press the Enter Key as shown in section 6.2 Display Diagram. Program Mode is protected by a password to keep unwarranted changes from occurring. The factory default password is 27513. When in program mode, remote communications are not functional. An automatic timeout feature is provided so that the transmitter does not remain inadvertently in program mode. The timeout is set for 1 minute before prompted for additional time. Total timeout is 2 minutes.

**Note:**
Whenever program mode is exited from the display the unit will reset itself to insure all changes have been accepted. The reset will take approximately 5 seconds before the level transmitter is able to respond to commands.

**Note:**
In program mode, the transmitter will not respond to incoming Modbus commands. A busy error will be sent to the controller to notify the unit is in program mode. This function will prevent a user at a remote terminal from programming the unit while a user is accessing program mode from the display.

6.2 Display Diagram

**UP Arrow** – Used to move cursor on screen up and to increment number.

**DOWN Arrow** – Used to move cursor on screen down and to decrease number.

**SCROLL Arrow** – Used to move cursor on screen to the right, cursor will cycle back.

**ENTER Key** – Used to Enter Program Mode, select Highlighted Item, and Confirm Selection.

**EXIT Key** – Hidden key in the middle of the display that is used to exit menu at any time.

**MEASURED VARIABLE** – The process variable that is selected to display. The display will automatically scroll between selected variables.

**MEASUREMENT** – The numerical value for the MEASURED VARIABLE shown on the display.

**UNITS** – Unit of measurement for the MEASURED VARIABLE shown on the display.

**TEMPERATURE** – Average temperature for the product in the tank. Only shown if the level transmitter was purchased with temperature.

**NOTIFICATIONS** – Four squares with letters. Top left square will always be present indicating a D for DDA mode or a M for Modbus mode. Top right square, A, will only show when there is an alarm. Toggle the UP Arrow key to view alarms. Bottom right square, F, will only show when there is a fault. Toggle the DOWN Arrow key to view error codes. Bottom left square, P, will only show when the unit is being programmed remotely.

6.3 Menu Structure

- **Basic Setup**
  - Display
  - Units
    - Length Units
    - Temp Units
    - Volume Units
  - Address
  - Signal Strength
    - Prod Trig Lvl
    - Int Trig Lvl
    - Limit Trig Lvl

- **Calibrate**
  - Product Level
    - Current Level
    - Offset
  - Interface Level
    - Current Level
    - Offset
  - Limit Level
    - Current Level
    - Offset

- **Factory**
  - Settings
    - Gradient
    - Serial Number
    - HW Revision
    - SW Revision
    - SARA Blanking
    - Magnet Blanking
    - Gain
    - Min Trig Level
  - Temp Setup
  - Float Config
  - Auto Threshold
  - Reset to Factory
  - Baud Rate
  - Volume

7. Alarms

The Modbus output is equipped with several alarms that will be shown on the display. Use the stylus to tap the Up arrow to view alarms. The Modbus output is set to fail high, greater than the order length, if there is an issue and the level value output cannot be trusted.
### 8. Error Codes (Faults)

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| 101 Missing Magnet | • Verify Float Configuration is correct for the number of floats installed.  
• Verify Float(s) are not in inactive zone.  
• Verify Auto Threshold is enabled.  
• Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 102 Internal Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 103 Internal Fault 2 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 104 Internal Fault 3 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 105 Lobe Fault 1 | • Verify Auto Threshold is enabled.  
• Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 106 Lobe Fault 2 | • Verify Auto Threshold is enabled.  
• Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 107 Delta Fault | Contact Factory to discuss application. | |
| 108 Internal Fault 4 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 109 Peak Fault | • Verify Auto Threshold is enabled.  
• Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 110 Hardware Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 111 Power Fault | • Cycle power to sensor.  
• Verify Power Supply rating.  
• Verify wiring.  
If proper operation is not restored, Contact Factory. | |
| 112 Hardware Fault 2 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 113 Hardware Fault 3 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 114 Hardware Fault 4 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 115 Timing Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 116 Timing Fault 2 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 117 Timing Fault 3 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 118 DAC Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 119 DAC Fault 2 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 120 DAC Fault 3 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 121 DAC Fault 4 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 122 SPI Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 123 SPI Fault 2 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 124 Setpoint Fault | The analog setpoints are too close.  
Minimum distance is 150 mm (6 in.) for analog and 290 mm (11.5 in.) for SIL.  
Adjust programmed setpoints as needed.  
If proper operation is not restored, Contact Factory. | |
| 125 Loop 1 Out of Range | Verify that magnets are positioned within expected measuring range.  
Adjust programmed setpoints as needed.  
If proper operation is not restored, Contact Factory. | |
| 126 Loop 2 Out of Range | Verify that magnets are positioned within expected measuring range.  
Adjust programmed setpoints as needed.  
If proper operation is not restored, Contact Factory. | |
| 127 EEPROM Fault 1 | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 128 CRC Fault | Reset CRC using LP Dashboard.  
If proper operation is not restored, Contact Factory. | |
| 129 Flash Failure | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |
| 130 Internal Error | Cycle power to sensor.  
If proper operation is not restored, Contact Factory. | |

### 9. Modbus Interface

**Note:**
Termination and biasing of RS-485 data lines are as follows:

**Biasing**
Each LP-Series transmitter uses a Fail-Safe, Slew-Rate-Limited RS-485/RS-422 Transceivers.  
No additional biasing, resistors should be present on the connecting devices (PLC, DCS, PC, Converter).

**Termination**
Each LP-Series transmitter uses a Fail-Safe, Slew-Rate-Limited RS-485/RS-422 Transceivers.  
No additional termination resistors are necessary in connecting devices (PLC, DCS, PC, Converter).
9.1 LP Dashboard

The Modbus implementation for the digital transmitter conforms to the 'Modicon Modbus Protocol Reference Guide, PIMBUS-300 Rev. G' available from Modicon, Inc. The information provided below assumes familiarity with the Modbus protocol as outlined in this reference guide. All information provided applies to Modbus RTU protocol only.

9.1.1 Installing LP Dashboard

Adjustments to the calibration and setup parameters of the Modbus interface can be performed using the LP-Series Dashboard. The dashboard can be run from any Windows 7 or newer OS using a RS485 to USB converter (MTS part # 380114).

Perform the following steps to install the LP Dashboard and establish communication:

1. Install setup software from the USB stick that came with the level transmitter or go to www.temposonics.com to download the latest version.

2. Connect level transmitter to RS485 to USB converter, connect 24 Vdc power to the level transmitter, and connect the RS485 to USB converter to the PC. Example setup shown below.

   Fig. 3: Example setup

3. Open LP Dashboard and select Modbus protocol from drop down menu.

4. Select COM Port. Software will show active COM ports. Make sure converter is connected before starting LP Dashboard or COM port will not show.

5. The default address for the level transmitters from the factory is 247. Select address 247. If you do not know the address you can use the Search function at the bottom of the address range or the display menu.

   Fig. 11: Initial screen

9.1.2 Home screen

The LP Dashboard Home Screen will look different based on whether or not temperature has been ordered and volume measurement has been enabled. If the level transmitter includes temperature measurement and volume measurement is enabled then the Home Screen will look as shown. If the level transmitter does not include temperature measurement then the Home Screen will not show the middle panel for temperature. If the level transmitter does not have volume measurement enabled then the Home Screen will not show the bottom panel. The Home Screen can be accessed by pressing the three white bars on the top left.

The level panel on top shows the level measurement for the Product level and Interface level. If only the product float is selected then only the product float will be shown. The bold numbers are the numerical level and the graph is a time lapse of the graphical representation of the numbers. The red line is the approximate maximum level based off of the order length of the level transmitter. The numbers on the right of the level panel are the Trigger Level for the Product Float on top and the Interface Float on bottom. These are a representation of how strong of a return signal the level transmitter is experiencing.

The temperature panel will only show if temperature measurement was ordered and turned on. The left side shows the numerical value of the average temperature of all temperature sensors below the product level. The bar graph in the middle of the panel shows each individual temperature measurement point. Temperature 1 is always the lowest temperature closest to the bottom of the pipe or hose.

The volume panel is on the bottom. On the left side is the numerical value for GOVP, GOVI, GOVT, GOVU, NSVP, and mass including units. The bar graph in the middle is a graphical representation of the volume measurement.

Across the bottom of the Home Screen is the visual indication of the fault codes from section 8. Green indicates no fault and red indicates fault. Next is the firmware version in the middle followed by the serial number. On the far right are the lights for the soft alarms that can be set in the LP Dashboard. Green indicates the alarm is not tripped and red indicates that the alarm has been tripped.

Fig. 12: Home screen
9.1.3 Configuration

The Configuration tab allows the level transmitter to be configured for the specific application.

**Factory Set:**

- **Auto Threshold:** Default setting is ON and should not be turned off. This feature allows the unit to automatically adjust the threshold for optimal performance.
- **Product Float:** Default setting of ON for all applications.
- **Interface Float:** Default setting of ON if ordering two floats on the sales order. If the number of floats turned on is different from the number of floats physically on the level transmitter the level transmitter will go into Fault.
- **Serial Number:** Serial Number assigned by MTS at the time of manufacture. The serial number is used for tracking and replacement parts. Do not change.
- **Temperature:** Default setting of OFF if ordered without temperature. Default setting of ON if ordered with temperature. Turning temperature ON when the level transmitter was not ordered with temperature will not cause temperature to work and will force the level transmitter into Fault.
- **Display Enable:** Default setting of ON. Display can be turned off by changing to OFF and cycling power.
- **User Configurable:**
  - **Reverse Measure:** Allows the end user to change the direction in which the MTS level transmitter counts. The default setting is OFF and the level transmitter will reference the tip of the pipe/hose and count up from the tip. The ON setting will reference the head of the level transmitter and count up as it moves towards the tip.
  - **Device Address:** The end user can configure the Modbus address. Default address is 247. The default address should not be used in a network.

**Baud Rate:** Allows the end user to select the desired baud rate. Default setting is 4800.

**Display Setting:** Allows the end user to configure the display. Available options are level or volume. Default setting is level.

**Volume Enable:** Allows the end user to turn ON and OFF the volume calculation of the LP-Series.

9.1.4 Signal settings

**Factory Set:**

- **Gradient:** Is the speed at which the magnetostrictive signals travel along the sensing element. Typical range is from 8.9 to 9.2. Do not change unless replacing the sensing element. Changing this number will directly affect accuracy.
- **Signal Gain:** Is the strength of the interrogation pulse. MTS uses the same electronics for all lengths and adjusts the signal based on the order length. Do not change unless instructed to do so by the MTS Factory.

9.1.5 Level settings
9.1.6 Level settings (Cont.)

User Configurable:

Length Units: the unit of measurement used for engineering units. Default is inches if ordered in inches and mm if ordered in mm. Options include inches, feet, millimeters, centimeters, and meters.

Method - Enter Current Tank Level: a calibration method that calibrates the level transmitter based off of one point of measurement. Go to Product Level and enter value of current product level based off of a manual measurement while the tank level is not changing. Go to Interface Level and enter value of current interface level based off of a manual measurement while the tank is not changing. Click the Write button at the top of the tab. Level transmitter is now calibrated.

Product High Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the product level exceeds the value in the box then the alarm will become active.

Product Low Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the product level is less than the value in the box then the alarm will become active.

Interface High Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the interface level exceeds the value in the box then the alarm will become active.

Interface Low Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the interface level is less than the value in the box then the alarm will become active.

9.1.7 Temperature settings

Factory Set:

Number of Sensors: Defines how many temperature sensors the level transmitter is looking for. The number should match the number of temperature sensors in the model number.

Number of Averages: This is the number of temperature readings that are averaged together for the temperature output. The higher the number the more temperature readings that are averaged. The higher the number the smoother the output but also the slower the update to changes in the process temperature.

Position: The location of the temperature sensor in reference to the end of the pipe.

Slope: Calibration factor for the temperature sensor. The defaults setting is 1.0. Do not change unless a new sensing element with temperature is ordered.

Intercept: Calibration factor for the temperature sensor. The default setting is 0.0. Do not change unless a new sensing element with temperature is ordered.

User Configurable:

Temperature Units: Change the units of measure for the temperature settings. Options are Fahrenheit or Celsius.

Temperature High Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the temperature exceeds the value in the box then the alarm will become active.

Temperature Low Alarm: Soft alarm that can be disabled or enabled by clicking the X and √ next to the box. If the temperature is less than the value in the box then the alarm will become active.

9.1.8 Volume settings

User Configurable:

Volume Units: allows the user to select the unit of measure for the volume output. Available options are liters, cubic millimeters, cubic meters, cubic inches, cubic feet, gallons, and barrels.
Density Units: allows the user to select the unit of measure for the density input. Available options are kilograms, grams, ounces, pounds, ton, and tonnes.

Mass Units: allows the user to select the unit of measure for the mass output. Available options are grams per milliliter, grams per liter, kilograms per cubic meter, kilograms per liter, pounds per cubic inch, pounds per cubic foot, pounds per gallon, ton per cubic yard, and tonnes per cubic meter.

Correction Method: allows the end user to select the temperature correction method from the available API tables including 6A, 6B, 6C, 6C Mod, and Custom Table. Custom Table allows the end user to enter up to a 50 point custom temperature correction table.

API Gravity: allows the end user to enter the API gravity of the liquid as defined in the glossary. Used for 6A and 6B correction methods.

TEC: Thermal Expansion Coefficient used for temperature correction. Allowable values are 270 to 930. TEC units are 10 E-6/Deg F. Used for 6C Mod correction method.

Reference Temp: allows the user to specify the reference temperature for 6C Mod correction method.

Density: allows the user to input the measured density for mass calculations.

Calculation Mode: allows the end user to select between using a strapping table and a sphere. Default setting is Sphere.

Working Capacity: allows the end user to enter the working capacity of the tank so ullage can be calculated.

Sphere Radius: the radius of the sphere to be used for volume calculations.

Sphere Offset: an offset value that should be added to the volume calculation of the sphere based on tank geometry.

Entries: allows the user to select how many strapping tables entry points to use. Maximum is 200.

Export Table: allows the user to export the strapping table from the level transmitter. This should always be done after completing the strapping table. Save as the site name, tank number, and any other unique identifier.

Import Table: allows the user to import the strapping table from a file. This can be used when replacing electronics or for tanks of the same size.

---

9.1.9 Flash settings

![Fig. 9: Flash settings](image)

**User Configurable:**

- **Change the device type to DDA:** allows the user to change the output protocol from Modbus to DDA. Should only be used by the Factory.

- **Change the device type to USTD:** allows the user to change the output protocol from Modbus to USTD. Should only be used by the Factory.

**User Configurable:**

- **Reset to Factory Defaults:** Allows the end user to reset all settings back to the original settings as they were when they left the MTS factory. This is intended to be used as a first step in troubleshooting. Do note, the Zero and Span set points will reset to factory settings.

- **Fix fault code 128:** If fault code 128 appears red then click the link on the Dashboard to clear the fault.

- **Cycle power the device:** Allows the end user to have the level transmitter automatically turn power off, turn power on, and reboot the device.

9.1.10 Save settings

![Fig. 10: Save settings](image)
**Factory Set**

Change the device type to DDA: allows the user to change the output protocol from Modbus to DDA. Should only be used by the Factory.

Change the device type to USTD: allows the user to change the output protocol from Modbus to USTD. Should only be used by the Factory.

**User Configurable:**

Read Settings from File: Allows the end user to upload factory parameters from a backup file to the LP Dashboard. This task is usually performed from a saved backup file or the original backup file maintained by MTS.

Write Setting to a File: Allows the end user to download a backup file of factory parameters from the LP Dashboard to a PC. This task is usually performed after Read Settings from Gauge. Note – wait until all settings have changed from Red to White before writing as the color change signals that the settings have been updated.

Write Settings to Gauge: Allows the end user to program the level transmitter with the factory parameters displayed on the LP Dashboard. This task is usually performed after Read Settings from File.

Read Settings from Gauge: Allows the end user to update all of the factory parameters displayed on the screen. All settings will turn Red and then will turn white as they are updated.

**Note:**

A copy of the backup file is maintained by MTS including all factory parameters as the level transmitter was originally setup after completing testing and calibration at the MTS factory. MTS can provide a copy of the backup file upon request based off of the serial number of the level transmitter. Contact MTS Technical Support for assistance.

---

**9.2 Programming the display**

The display menu and functionality is described in section 6.2. The display menu structure is shown in section 6.3. This section shows examples of the display screens and describes the variables that can be viewed and/or edited. The factory password for entering the display is 27513.

**9.2.1 Main Menu**

Basic Setup – Allows the user to access standard commissioning activities such as setting the Modbus address.

Calibrate – Allows the user to calibrate the level measurement of product level and/or interface level.

Factory – Allows the user to access Factory settings and should only be accessed under the guidance of MTS Technical Support

**9.2.1.1 Basic Setup**

Display – Allows the user to change the displayed value between engineering units, milliamps, and percentage.

Units – Allows the user to select the units of measure for level and temperature.

Address – Allows the user to view and change the Modbus address.

Signal Strength – Allows the user to view the numerical value for the strength of the return signal for product and interface level.
### 9.2.1.1.1 Display

**Length** – Changes display to show the level measurement in the selected units.

**Volume** – Changes display to show the volume measurement in the selected units.

### 9.2.1.1.2 Units

**Length Units** – Allows the user to select the units of measure for the level measurement.

**Temp Units** – Allows the user to select the units of measure for the temperature measurement.

**Volume Units** – Allows the user to select the units of measure for the volume measurement.

#### 9.2.1.1.2.1 Length Units

Select between millimeters, centimeters, meters, kilometers, inches, feet, and yards.

#### 9.2.1.1.2.2 Temp Units

Select between Celsius and Fahrenheit.

#### 9.2.1.1.2.3 Volume Units

Select between liters, cubic millimeters, cubic centimeters, cubic decimeters, cubic meters, cubic inches, cubic feet, gallons, and barrels.
9.2.1.3 Address

Allows the user to view and change the Modbus address.

9.2.1.4 Signal Strength

**Prod Trig Lvl** - Allows the user to view the numerical value for the strength of the return signal for product level. 

**Int Trig Lvl** - Allows the user to view the numerical value for the strength of the return signal for interface level. 

**Limit Trig Lvl** – Allows the user to view the numerical value for the strength of the return signal for interface level. Only available on LevelLimit level transmitter.

9.2.1.4.1 Prod Trig Lvl

Numerical value for the strength of the return signal, cannot be edited.

9.2.1.4.2 Int Trig Lvl

Numerical value for the strength of the return signal, cannot be edited. If the option is not enabled then the display will show Not Enabled as shown in section 9.2.1.4.3. If enabled it will show the trigger level as shown above.

9.2.1.4.3 Limit Trig Lvl

Numerical value for the strength of the return signal, cannot be edited. If the option is not enabled then the display will show Not Enabled as shown. If enabled it will show the trigger level as in sections 9.2.1.4.1.

9.2.1.2 Calibrate

**Product Level** – Allows the user to calibrate the product level 

**Interface Level** – Allows the user to calibrate the interface level 

**Limit Level** – Not Enabled
9.2.1.2.1 Product Level

**Current Level** – allows the user to calibrate based on the current tank level

**Offset** – allows the user to calibrate by changing the offset value for the level, not recommended

9.2.1.2.1.1 Current Level

Enter the desired value that the product level should correspond to.

9.2.1.2.1.2 Offset

Only used based on Factory Technical Support

9.2.1.2.2 Interface Level

**Current Level** – allows the user to calibrate based on the current tank level

**Offset** – allows the user to calibrate by changing the offset value for the level, not recommended

9.2.1.2.2.1 Current Level

Enter the desired value that the interface level should correspond to. If the Interface Level is disabled it will show Not Enabled on the display as shown in section 9.2.1.2.3.1.

9.2.1.2.2.2 Offset

Only used based on Factory Technical Support. If the Interface Level is disabled it will show Not Enabled on the display as shown in section 9.2.1.2.3.2.
9.2.1.2.3 Limit Level

Current Level – allows the user to calibrate based on the current tank level
Offset – allows the user to calibrate by changing the offset value for the level, not recommended

9.2.1.2.3.1 Current Level

Only used based on Factory Technical Support. If enabled it will show the value as shown in section 9.2.1.2.1.2. When disabled it will show Not Enabled as shown above.

9.2.1.2.3.2 Offset

Only used based on Factory Technical Support. If enabled it will show the value as shown in section 9.2.1.2.1.2. When disabled it will show Not Enabled as shown above.

9.2.1.3 Factory

Settings – Allows the user to access factory settings
Temp Setup - Allows the user to setup temperature measurement if equipped
Float Config – Allows the user to setup the number of floats used
Auto Threshold – Allows the user to enable/disable auto threshold
Reset to Factory – Allows the user to reset all factory settings
Baud Rate - Allows the user to view and change the available Baud Rates of 4800, 9600, or 19200 baud. Includes option of No or Even Parity.
Volume – Allows the user to enable/disable the volume measurement

9.2.1.3.1 Settings

Gradient – Allows the user to change the calibration factor when changing sensing elements
Serial Number – Serial Number assigned by MTS at the time of manufacture. The serial number is used for tracking and replacement parts.
HW Revision – Read only information about the level transmitter’s hardware
SW Revision – Read only information about the level transmitter’s firmware
SARA Blanking – Allows the user to adjust the blanking window for the interrogation pulse.
Magnet Blanking – Allows the user to adjust the blanking window between two floats.
Gain – allows the user to adjust the strength of the interrogation pulse
Min Trig Level – Allows the user to adjust the threshold for which the return signal must meet.
Gradient is the speed at which the magnetostrictive signals travel along the sensing element. Typical range is from 8.9 to 9.2. Do not change unless replacing the sensing element. Changing this number will directly affect accuracy.

Serial Number assigned by MTS at the time of manufacture. The serial number is used for tracking and replacement parts.

Allows the user to adjust the blanking window for the interrogation pulse. RefineME and SoClean should be at 25 and Tank SLAYER and CHAMBERED at 40. Do not adjust without talking to MTS Technical Support.

Allows the user to adjust the blanking window between two floats. Default is 20. Do not adjust without talking to MTS Technical Support.
9.2.1.3.1.7 Gain

The Gain is the strength of the interrogation pulse. MTS uses the same electronics for all lengths and adjusts the signal based on the order length. Do not adjust without talking to MTS Technical Support.

9.2.1.3.1.8 Min Trig Level

Allows the user to adjust the threshold for which the return signal must meet. The default setting is 150. Do not adjust without talking to MTS Technical Support.

9.2.1.3.2 Temp Setup

**Temp Enable** – Allows the user to turn the temperature measurement function on or off. Does not enable the function if the unit was not ordered with temperature measurement.

**No of Temp** – Allows the user to adjust the number of temperature measurement points the level transmitter is looking for. Does not adjust the physical number of temperature sensors that were ordered. Modbus has the option for one, five, twelve, or sixteen temperature sensors.

9.2.1.3.2.1 Temp Enable

Allows the user to turn the temperature measurement function on or off. Does not enable the function if the unit was not ordered with temperature measurement.
9.2.1.3.2 No of Temp

Allows the user to adjust the number of temperature measurement points the level transmitter is looking for. Does not adjust the physical number of temperature sensors that were ordered. Modbus has the option for one, five, twelve, or sixteen temperature sensors.

9.2.1.3.3 Float Config

Allows the user to select between Product Only, Interface Only, Product/Interface, and adding the Limit option. Limit option is only enabled on LevelLimit level transmitter.

9.2.1.3.4 Auto Threshold

Default setting is ON and should not be turned off. This feature allows the unit to automatically adjust the threshold for optimal performance.

9.2.1.3.5 Reset to Factory

Allows the end user to reset all settings back to the original settings as they were when they left the MTS factory. This is intended to be used as a first step in troubleshooting. Do note, the Zero and Span set points will reset to factory settings.

9.2.1.3.6 Baud Rate

Allows the user to view and change the available Baud Rates of 4800, 9600, or 19200 baud. Includes option of No or Even Parity.

9.2.1.3.7 Volume

Allows the user to enable/disable the volume measurement.
9.3 Modbus function codes

### Communication parameters:

<table>
<thead>
<tr>
<th>Modbus:</th>
<th>4800, 9600, or 19200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Reference) Monitor:</td>
<td>Modbus RTU Variable BAUD Rate</td>
</tr>
</tbody>
</table>

The following Modbus function codes are supported:

**Function 03 - Read Holding Registers**

The device responds to this message by returning the contents of the requested data register(s).

(See ‘Device Modbus Register Maps’ on page 22).

The following implementation-specific considerations apply:

- If an unsupported or reserved register is requested, exception code #2 is returned (See ‘Device Modbus Register Maps’ on page 212 for unsupported/reserved registers).
- If a register contains an device error a maximum negative value is returned.
- If a register is blank, indicating that the desired function is not enabled (e.g., volume calculations) a max negative value is returned.
- Unsupported or reserved bits will always be set to 0. See ‘Device Modbus Register Maps’ on page 22 for alarm bit definitions.

**Function 04 - Read Input Registers**

This function is handled exactly the same as Function 03. (Be advised that all registers are read-only in this implementation).

**Function 06 - Preset Single Register**

Confirmation of successful transmission is confirmed when the device responds by echoing back what was sent.

**Function 08 - Diagnostics (Subfunction 00, Return Query Data)**

The device responds to this request with the following data:

- Slave address: echoed
- Function: 08H
- Subfunction high: 00H
- Subfunction low: 00H
- Query data (16-bit): echoed (0000H or FF00H)
- Error check: 16-bit CRC/8-bit LRC

**Function 08 - Diagnostics (Subfunction 01, Restart Communications Option)**

If the device is in listen-only mode, the device responds to this message by switching out of listen-only mode - (resulting in no response being sent to the request).

If the device is not in listen only mode, it responds as follows:

- Slave address: echoed
- Function: 08H
- Subfunction high: 00H
- Subfunction low: 01H
- Query data (16-bit): echoed (0000H or FF00H)
- Error check: 16-bit CRC/8-bit LRC

**Function 08 - Diagnostics (Subfunction 04, Force Listen-Only Mode)**

The device responds to this request by switching to listen-only mode. Messages are still received and parsed, but no responses are transmitted. To switch out of listen-only mode, issue a ‘Restart Communications Option’ request (function 08, subfunction 01) or cycle power.

**Function 16 - Preset Multiple Registers**

The device response returns the slave address, function code, starting address, and quantity of registers preset.

**Function 17 - Report Slave ID**

The device responds to this request with the following data:

- Slave address: echoed
- Function: 11H
- Byte count: 05H
- Slave ID: FFH
- Run indicator status: FFH (ON)
- Additional data: ‘DMS’
- Error check: 16-bit CRC/8-bit LRC

### Modbus Exception Codes

The following standard Modbus exceptions are implemented:

**Error code 01 (Illegal Function)**

Reported when:

- A function other than 03, 04, 06, 08, 16 or 17 is requested
- Function 08 is requested, and a subfunction other than 00, 01, or 04 is requested, or when invalid register within set is requested.
- Handled by error code 07

**Error code 02 (Illegal Data Address)**

Reported when:

- Function 03 or 04 is requested and the starting register number is greater than 5198 (register greater than 35198 or 45198)
- Function 03 or 04 is requested and a register within the requested register set is invalid
Error code 03 (Illegal Data Value)

Reported when:
» Function 03 or 04 is requested and the number of data points is greater than 800.

Error code 06 (Busy)

Reported when:
» The device LCD menu is active.

Error code 07 (Illegal Operation)

Reported when:
» Function 06 or 16 is requested while the device is write protected.
» Function 08 is requested with an invalid subfunction.

9.4 Modbus register maps

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30001</td>
<td>0000</td>
<td>Product Level High Word (x 1000)</td>
<td>2, Page 19</td>
</tr>
<tr>
<td>30002</td>
<td>0001</td>
<td>Product Level Low Word (x 1000)</td>
<td>3, Page 19</td>
</tr>
<tr>
<td>30003</td>
<td>0002</td>
<td>Interface Level High Word (x 1000)</td>
<td></td>
</tr>
<tr>
<td>30004</td>
<td>0003</td>
<td>Interface Level Low Word (x 1000)</td>
<td></td>
</tr>
<tr>
<td>30005</td>
<td>0004</td>
<td>Limit Level High Word (x 1000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30006</td>
<td>0005</td>
<td>Limit Level Low Word (x 1000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30007</td>
<td>0006</td>
<td>Temperature 1 High Word (x 10000)</td>
<td>4, Page 19</td>
</tr>
<tr>
<td>30008</td>
<td>0007</td>
<td>Temperature 1 Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30009</td>
<td>0008</td>
<td>Temperature 2 High Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30010</td>
<td>0009</td>
<td>Temperature 2 Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30011</td>
<td>0010</td>
<td>Temperature 3 High Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30012</td>
<td>0011</td>
<td>Temperature 3 Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30013</td>
<td>0012</td>
<td>Temperature 4 High Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30014</td>
<td>0013</td>
<td>Temperature 4 Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30015</td>
<td>0014</td>
<td>Temperature 5 High Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30016</td>
<td>0015</td>
<td>Temperature 5 Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30017</td>
<td>0016</td>
<td>Temperature Average High Word (x 10000)</td>
<td>5, Page 19</td>
</tr>
<tr>
<td>30018</td>
<td>0017</td>
<td>Temperature Average Low Word (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30019</td>
<td>0018</td>
<td>GOVP High Word</td>
<td>6, Page 19</td>
</tr>
<tr>
<td>30020</td>
<td>0019</td>
<td>GOVP Low Word</td>
<td></td>
</tr>
<tr>
<td>30021</td>
<td>0020</td>
<td>GOVI High Word</td>
<td>7, Page 19</td>
</tr>
<tr>
<td>30022</td>
<td>0021</td>
<td>GOVI Low Word</td>
<td></td>
</tr>
<tr>
<td>30023</td>
<td>0022</td>
<td>GOVT High Word</td>
<td>8, Page 19</td>
</tr>
<tr>
<td>30024</td>
<td>0023</td>
<td>GOVT Low Word</td>
<td></td>
</tr>
<tr>
<td>30025</td>
<td>0024</td>
<td>GOVU High Word</td>
<td>9, Page 19</td>
</tr>
<tr>
<td>30026</td>
<td>0025</td>
<td>GOVU Low Word</td>
<td></td>
</tr>
<tr>
<td>30027</td>
<td>0026</td>
<td>NSVP High Word</td>
<td>10, Page 19</td>
</tr>
<tr>
<td>30028</td>
<td>0027</td>
<td>NSVP Low Word</td>
<td></td>
</tr>
<tr>
<td>30029</td>
<td>0028</td>
<td>MASS High Word</td>
<td></td>
</tr>
<tr>
<td>30030</td>
<td>0029</td>
<td>MASS Low Word</td>
<td></td>
</tr>
</tbody>
</table>
### 9.4 Modbus register maps (continued)

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30031</td>
<td>0030</td>
<td>Temperature Correction Method High Word</td>
<td>11, Page 19</td>
</tr>
<tr>
<td>30032</td>
<td>0031</td>
<td>Temperature Correction Method Low Word</td>
<td></td>
</tr>
<tr>
<td>30033</td>
<td>0032</td>
<td>API Gravity High Word (x 100)</td>
<td></td>
</tr>
<tr>
<td>30034</td>
<td>0033</td>
<td>API Gravity Low Word (x 100)</td>
<td></td>
</tr>
<tr>
<td>30035</td>
<td>0034</td>
<td>Working Capacity High Word (x 10)</td>
<td></td>
</tr>
<tr>
<td>30036</td>
<td>0035</td>
<td>Working Capacity Low Word (x 10)</td>
<td></td>
</tr>
<tr>
<td>30037</td>
<td>0036</td>
<td>TEC High Word (x 10000000)</td>
<td>12, Page 19</td>
</tr>
<tr>
<td>30038</td>
<td>0037</td>
<td>TEC Low Word (x 10000000)</td>
<td></td>
</tr>
<tr>
<td>30039</td>
<td>0038</td>
<td>Density High Word (x 100)</td>
<td>13, Page 19</td>
</tr>
<tr>
<td>30040</td>
<td>0039</td>
<td>Density Low Word (x 100)</td>
<td></td>
</tr>
<tr>
<td>30041</td>
<td>0040</td>
<td>Reference Temperature High Word (x 10)</td>
<td>14, Page 19</td>
</tr>
<tr>
<td>30042</td>
<td>0041</td>
<td>Reference Temperature Low Word (x 10)</td>
<td></td>
</tr>
<tr>
<td>30043</td>
<td>0042</td>
<td>Volume Calculation Mode High Word</td>
<td>15, Page 19</td>
</tr>
<tr>
<td>30044</td>
<td>0043</td>
<td>Volume Calculation Mode Low Word</td>
<td></td>
</tr>
<tr>
<td>30045</td>
<td>0044</td>
<td>Sphere Radius High Word (x 10)</td>
<td>16, Page 19</td>
</tr>
<tr>
<td>30046</td>
<td>0045</td>
<td>Sphere Radius Low Word (x 10)</td>
<td></td>
</tr>
<tr>
<td>30047</td>
<td>0046</td>
<td>Sphere Offset High Word (x 10)</td>
<td>17, Page 19</td>
</tr>
<tr>
<td>30048</td>
<td>0047</td>
<td>Sphere Offset Low Word (x 10)</td>
<td></td>
</tr>
<tr>
<td>30049</td>
<td>0048</td>
<td>Average Interval High Word</td>
<td>18, Page 19</td>
</tr>
<tr>
<td>30050</td>
<td>0049</td>
<td>Average Interval Low Word</td>
<td></td>
</tr>
<tr>
<td>30051</td>
<td>0050</td>
<td>Alarm/Status High Word</td>
<td>19, Page 20</td>
</tr>
<tr>
<td>30052</td>
<td>0051</td>
<td>Alarm/Status Low Word</td>
<td></td>
</tr>
<tr>
<td>30053</td>
<td>0052</td>
<td>VCF Calculation Error Status</td>
<td>20, page 20</td>
</tr>
<tr>
<td>30054</td>
<td>0053</td>
<td>Volume Calculation Error Status</td>
<td>21, page 20</td>
</tr>
<tr>
<td>30055</td>
<td>0054</td>
<td>Resets the EEPROM CRC</td>
<td></td>
</tr>
<tr>
<td>30056</td>
<td>0055</td>
<td>Resets the EEPROM data to factory</td>
<td></td>
</tr>
<tr>
<td>30057</td>
<td>0056</td>
<td>Resets the EEPROM data to defaults</td>
<td></td>
</tr>
<tr>
<td>30058</td>
<td>0057</td>
<td>Temperature sensor status high word</td>
<td></td>
</tr>
<tr>
<td>30059</td>
<td>0058</td>
<td>Temperature sensor status low word</td>
<td></td>
</tr>
<tr>
<td>30060 - 30099</td>
<td>0059 - 0098</td>
<td>Reserved</td>
<td>22, page 20</td>
</tr>
<tr>
<td>30100</td>
<td>0099</td>
<td>Temperature Units High</td>
<td>23, page 20</td>
</tr>
<tr>
<td>30101</td>
<td>0100</td>
<td>Temperature Units Low</td>
<td></td>
</tr>
<tr>
<td>30102</td>
<td>0101</td>
<td>Density Units High</td>
<td>24, page 20</td>
</tr>
<tr>
<td>30103</td>
<td>0102</td>
<td>Density Units Low</td>
<td></td>
</tr>
<tr>
<td>30104</td>
<td>0103</td>
<td>Volume Units High</td>
<td>25, page 20</td>
</tr>
<tr>
<td>30105</td>
<td>0104</td>
<td>Volume Units Low</td>
<td></td>
</tr>
<tr>
<td>30106</td>
<td>0105</td>
<td>Length Units High</td>
<td>26, page 20</td>
</tr>
<tr>
<td>30107</td>
<td>0106</td>
<td>Length Units Low</td>
<td></td>
</tr>
<tr>
<td>30108</td>
<td>0107</td>
<td>Mass Units High</td>
<td>27, page 20</td>
</tr>
<tr>
<td>30109</td>
<td>0108</td>
<td>Mass Units Low</td>
<td></td>
</tr>
<tr>
<td>30110</td>
<td>0109</td>
<td>Set New Device Address</td>
<td>28, page 20</td>
</tr>
<tr>
<td>30111</td>
<td>0110</td>
<td>Reboot the device</td>
<td></td>
</tr>
<tr>
<td>30112 - 30199</td>
<td>0111 - 0108</td>
<td>Reserved</td>
<td>22, Page 20</td>
</tr>
<tr>
<td>30200</td>
<td>199</td>
<td>Product Level High Word (x1000)</td>
<td>2, Page 19</td>
</tr>
<tr>
<td>30201</td>
<td>200</td>
<td>Product Level Low Word (x1000)</td>
<td>3, Page 19</td>
</tr>
<tr>
<td>30202</td>
<td>201</td>
<td>Interface Level High Word (x1000)</td>
<td></td>
</tr>
<tr>
<td>30203</td>
<td>202</td>
<td>Interface Level Low Word (x1000)</td>
<td></td>
</tr>
<tr>
<td>30204</td>
<td>203</td>
<td>Limit Level High Word (x1000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30205</td>
<td>204</td>
<td>Limit Level Low Word (x1000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30206</td>
<td>205</td>
<td>Temperature 1 High Word (x10000)</td>
<td>4, Page 19</td>
</tr>
<tr>
<td>30207</td>
<td>206</td>
<td>Temperature 1 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30208</td>
<td>207</td>
<td>Temperature 2 High Word (x10000)</td>
<td></td>
</tr>
</tbody>
</table>
### Modbus Register Maps (continued)

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30209</td>
<td>208</td>
<td>Temperature 2 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30210</td>
<td>209</td>
<td>Temperature 3 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30211</td>
<td>210</td>
<td>Temperature 3 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30212</td>
<td>211</td>
<td>Temperature 4 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30213</td>
<td>212</td>
<td>Temperature 4 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30214</td>
<td>213</td>
<td>Temperature 5 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30215</td>
<td>214</td>
<td>Temperature 5 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30216</td>
<td>215</td>
<td>Temperature 6 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30217</td>
<td>216</td>
<td>Temperature 6 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30218</td>
<td>217</td>
<td>Temperature 7 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30219</td>
<td>218</td>
<td>Temperature 7 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30220</td>
<td>219</td>
<td>Temperature 8 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30221</td>
<td>220</td>
<td>Temperature 8 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30222</td>
<td>221</td>
<td>Temperature 9 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30223</td>
<td>222</td>
<td>Temperature 9 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30224</td>
<td>223</td>
<td>Temperature 10 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30225</td>
<td>224</td>
<td>Temperature 10 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30226</td>
<td>225</td>
<td>Temperature 11 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30227</td>
<td>226</td>
<td>Temperature 11 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30228</td>
<td>227</td>
<td>Temperature 12 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30229</td>
<td>228</td>
<td>Temperature 12 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30230</td>
<td>229</td>
<td>Temperature Average High Word (x10000)</td>
<td>5, Page 19</td>
</tr>
<tr>
<td>30231</td>
<td>230</td>
<td>Temperature Average Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30232</td>
<td>231</td>
<td>GOVP High Word ‡</td>
<td>6, Page 19</td>
</tr>
<tr>
<td>30233</td>
<td>232</td>
<td>GOVP Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30234</td>
<td>233</td>
<td>GOVI High Word ‡</td>
<td>7, Page 19</td>
</tr>
<tr>
<td>30235</td>
<td>234</td>
<td>GOVI Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30236</td>
<td>235</td>
<td>GOVT High Word ‡</td>
<td>8, Page 19</td>
</tr>
<tr>
<td>30237</td>
<td>236</td>
<td>GOVT Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30238</td>
<td>237</td>
<td>GOVU High Word ‡</td>
<td>9, Page 19</td>
</tr>
<tr>
<td>30239</td>
<td>238</td>
<td>GOVU Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30240</td>
<td>239</td>
<td>NSVP High Word ‡</td>
<td>10, Page 19</td>
</tr>
<tr>
<td>30241</td>
<td>240</td>
<td>NSVP Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30242</td>
<td>241</td>
<td>MASS High Word ‡</td>
<td></td>
</tr>
<tr>
<td>30243</td>
<td>242</td>
<td>MASS Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30244</td>
<td>243</td>
<td>Temperature Correction Method High Word ‡</td>
<td>11, Page 19</td>
</tr>
<tr>
<td>30245</td>
<td>244</td>
<td>Temperature Correction Method Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30246</td>
<td>245</td>
<td>API Gravity High Word (x100) ‡</td>
<td></td>
</tr>
<tr>
<td>30247</td>
<td>246</td>
<td>API Gravity Low Word (x100) ‡</td>
<td></td>
</tr>
<tr>
<td>30248</td>
<td>247</td>
<td>Working Capacity High Word (x10) ‡</td>
<td></td>
</tr>
<tr>
<td>30249</td>
<td>248</td>
<td>Working Capacity Low Word (x10) ‡</td>
<td></td>
</tr>
<tr>
<td>30250</td>
<td>249</td>
<td>TEC High Word (x1000000) ‡</td>
<td>12, Page 19</td>
</tr>
<tr>
<td>30251</td>
<td>250</td>
<td>TEC Low Word (x1000000) ‡</td>
<td></td>
</tr>
<tr>
<td>30252</td>
<td>251</td>
<td>Density High Word (x100) ‡</td>
<td>13, Page 19</td>
</tr>
<tr>
<td>30253</td>
<td>252</td>
<td>Density Low Word (x100) ‡</td>
<td></td>
</tr>
<tr>
<td>30254</td>
<td>253</td>
<td>Reference Temperature High Word (x10) ‡</td>
<td>14, Page 19</td>
</tr>
<tr>
<td>30255</td>
<td>254</td>
<td>Reference Temperature Low Word (x10) ‡</td>
<td></td>
</tr>
<tr>
<td>30256</td>
<td>255</td>
<td>Volume Calculation Mode High Word ‡</td>
<td>15, Page 19</td>
</tr>
<tr>
<td>30257</td>
<td>256</td>
<td>Volume Calculation Mode Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30258</td>
<td>257</td>
<td>Sphere Radius High Word (x10) ‡</td>
<td>16, Page 19</td>
</tr>
<tr>
<td>30259</td>
<td>258</td>
<td>Sphere Radius Low Word (x10) ‡</td>
<td></td>
</tr>
<tr>
<td>30260</td>
<td>259</td>
<td>Sphere Offset High Word (x10) ‡</td>
<td>17, Page 19</td>
</tr>
<tr>
<td>30261</td>
<td>260</td>
<td>Sphere Offset Low Word (x10) ‡</td>
<td></td>
</tr>
</tbody>
</table>
### 9.4 Modbus register maps (continued)

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30262</td>
<td>261</td>
<td>Average Interval High Word ‡</td>
<td>18, Page 19</td>
</tr>
<tr>
<td>30263</td>
<td>262</td>
<td>Average Interval Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30264</td>
<td>263</td>
<td>Alarm/Status High Word ‡</td>
<td>19, Page 20</td>
</tr>
<tr>
<td>30265</td>
<td>264</td>
<td>Alarm/Status Low Word ‡</td>
<td></td>
</tr>
<tr>
<td>30266</td>
<td>265</td>
<td>VCF Calculation Error Status ‡</td>
<td>20, Page 20</td>
</tr>
<tr>
<td>30267</td>
<td>266</td>
<td>Volume Calculation Error Status ‡</td>
<td>21, Page 20</td>
</tr>
<tr>
<td>30268</td>
<td>267</td>
<td>Temperature 13 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30269</td>
<td>268</td>
<td>Temperature 13 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30270</td>
<td>269</td>
<td>Temperature 14 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30271</td>
<td>270</td>
<td>Temperature 14 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30272</td>
<td>271</td>
<td>Temperature 15 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30273</td>
<td>272</td>
<td>Temperature 15 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30274</td>
<td>273</td>
<td>Temperature 16 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30275</td>
<td>274</td>
<td>Temperature 16 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30276</td>
<td>275</td>
<td>Temperature 17 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30277</td>
<td>276</td>
<td>Temperature 17 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30278</td>
<td>277</td>
<td>Temperature 18 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30279</td>
<td>278</td>
<td>Temperature 18 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30280</td>
<td>279</td>
<td>Temperature 19 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30281</td>
<td>280</td>
<td>Temperature 19 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30282</td>
<td>281</td>
<td>Temperature 20 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30283</td>
<td>282</td>
<td>Temperature 20 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30284</td>
<td>283</td>
<td>Temperature 21 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30285</td>
<td>284</td>
<td>Temperature 21 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30267</td>
<td>266</td>
<td>Volume Calculation Error Status ‡</td>
<td></td>
</tr>
<tr>
<td>30268</td>
<td>267</td>
<td>Temperature 13 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30269</td>
<td>268</td>
<td>Temperature 13 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30270</td>
<td>269</td>
<td>Temperature 14 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30271</td>
<td>270</td>
<td>Temperature 14 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30272</td>
<td>271</td>
<td>Temperature 15 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30273</td>
<td>272</td>
<td>Temperature 15 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30274</td>
<td>273</td>
<td>Temperature 16 High Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30275</td>
<td>274</td>
<td>Temperature 16 Low Word (x10000)</td>
<td></td>
</tr>
<tr>
<td>30276</td>
<td>275</td>
<td>Temperature 17 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30277</td>
<td>276</td>
<td>Temperature 17 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30278</td>
<td>277</td>
<td>Temperature 18 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30279</td>
<td>278</td>
<td>Temperature 18 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30280</td>
<td>279</td>
<td>Temperature 19 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30281</td>
<td>280</td>
<td>Temperature 19 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30282</td>
<td>281</td>
<td>Temperature 20 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30283</td>
<td>282</td>
<td>Temperature 20 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30284</td>
<td>283</td>
<td>Temperature 21 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30285</td>
<td>284</td>
<td>Temperature 21 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30286</td>
<td>285</td>
<td>Temperature 22 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30287</td>
<td>286</td>
<td>Temperature 22 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30288</td>
<td>287</td>
<td>Temperature 23 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30289</td>
<td>288</td>
<td>Temperature 23 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30290</td>
<td>289</td>
<td>Temperature 24 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30291</td>
<td>290</td>
<td>Temperature 24 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30292</td>
<td>291</td>
<td>Temperature 25 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30293</td>
<td>292</td>
<td>Temperature 25 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30294</td>
<td>293</td>
<td>Temperature 26 High Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30295</td>
<td>294</td>
<td>Temperature 26 Low Word (x10000)</td>
<td>Inactive</td>
</tr>
<tr>
<td>30300</td>
<td>299</td>
<td>Temperature Units High ‡</td>
<td>23, Page 20</td>
</tr>
<tr>
<td>30301</td>
<td>300</td>
<td>Temperature Units Low ‡</td>
<td></td>
</tr>
<tr>
<td>30302</td>
<td>301</td>
<td>Density Units High ‡</td>
<td>24, Page 20</td>
</tr>
<tr>
<td>30303</td>
<td>302</td>
<td>Density Units Low ‡</td>
<td></td>
</tr>
<tr>
<td>30304</td>
<td>303</td>
<td>Volume Units High ‡</td>
<td>25, Page 20</td>
</tr>
<tr>
<td>30305</td>
<td>304</td>
<td>Volume Units Low ‡</td>
<td></td>
</tr>
<tr>
<td>30306</td>
<td>305</td>
<td>Length Units High ‡</td>
<td>26, Page 20</td>
</tr>
<tr>
<td>30307</td>
<td>306</td>
<td>Length Units Low ‡</td>
<td></td>
</tr>
<tr>
<td>30308</td>
<td>307</td>
<td>Mass Units High ‡</td>
<td>27, Page 20</td>
</tr>
<tr>
<td>30309</td>
<td>308</td>
<td>Mass Units Low ‡</td>
<td></td>
</tr>
<tr>
<td>30310</td>
<td>309</td>
<td>Set New Device Address ‡</td>
<td>28, Page 20</td>
</tr>
<tr>
<td>30311-31108</td>
<td>310-1107</td>
<td>Reserved</td>
<td>22, Page 20</td>
</tr>
<tr>
<td>31109</td>
<td>1108</td>
<td>Alarm Units High</td>
<td>29, Page 20</td>
</tr>
<tr>
<td>31110</td>
<td>1109</td>
<td>Alarm Units Low</td>
<td></td>
</tr>
<tr>
<td>31111</td>
<td>1110</td>
<td>Interface High Alarm High (x 100)</td>
<td>30, Page 21</td>
</tr>
<tr>
<td>31112</td>
<td>1111</td>
<td>Interface High Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31113</td>
<td>1112</td>
<td>Interface Low Alarm High (x 100)</td>
<td>31, Page 21</td>
</tr>
<tr>
<td>31114</td>
<td>1113</td>
<td>Interface Low Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31115</td>
<td>1114</td>
<td>Product High Alarm High (x 100)</td>
<td>32, Page 21</td>
</tr>
<tr>
<td>31116</td>
<td>1115</td>
<td>Product High Alarm Low (x 100)</td>
<td></td>
</tr>
</tbody>
</table>
### 9.4 Modbus register maps (continued)

<table>
<thead>
<tr>
<th>Modbus Register</th>
<th>Data Address</th>
<th>Data Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>31117</td>
<td>1116</td>
<td>Product Low Alarm High (x 100)</td>
<td>33, Page 21</td>
</tr>
<tr>
<td>31118</td>
<td>1117</td>
<td>Product Low Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31119</td>
<td>1118</td>
<td>Limit High Alarm High (x 100)</td>
<td>34, Page 21</td>
</tr>
<tr>
<td>31120</td>
<td>1119</td>
<td>Limit High Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31121</td>
<td>1120</td>
<td>Limit Low Alarm High (x 100)</td>
<td>35, Page 21</td>
</tr>
<tr>
<td>31122</td>
<td>1121</td>
<td>Limit Low Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31123</td>
<td>1122</td>
<td>Temperature Average High Alarm High (x 100)</td>
<td>36, Page 21</td>
</tr>
<tr>
<td>31124</td>
<td>1123</td>
<td>Temperature Average High Alarm Low (x 100)</td>
<td></td>
</tr>
<tr>
<td>31125</td>
<td>1124</td>
<td>Temperature Average Low Alarm High (x 100)</td>
<td>37, Page 21</td>
</tr>
<tr>
<td>31126</td>
<td>1125</td>
<td>Temperature Average Low Alarm Low</td>
<td></td>
</tr>
<tr>
<td>31127–37215</td>
<td>1126-7215</td>
<td>Reserved</td>
<td>22, Page 20</td>
</tr>
</tbody>
</table>

### 9.5 How units are used

Registers that are read or preset are done so using the current unit type’s programmed unit.

**For example:**
If the current unit type is ‘Length’ and you currently have selected ‘Feet’ as your unit, then the value returned will be in that unit. Make sure the value programmed is also done so using that unit.

### 9.6 Modbus Register Map Notes

1. All registers can be accessed using either Modbus Function 03 (Read Holding Registers) or Modbus Function 04 (Read Input Registers). However, all registers are read-only in this implementation.

**For example:**
Registers 30001 and 30002 (using Function 03) can also be read as registers 40001 and 40002 (using Function 04).

2. Pairs of registers identified as ‘High Word’ and ‘Low Word’ must be read together reading the ‘High Word’ first. Both values need to be concatenated by the master to form a 32-bit unsigned ‘long word’ quantity.

**For example:**
Register 30001 (16-bit high word) = 0002H (Must be read first) Register 30002 (16-bit low word) = 3F8CH  
Long word (32-bit) = 00023F8CH (decimal 147340)

3. All registers identified as ‘(x 10)’, ‘(x 100)’, ‘(x 1000)’, ‘(x 10000)’ or ‘(x 100000)’ have been scaled (multiplied) by a factor of 10, 100, 1000, 10000 or 10000000 before transmission to preserve the fractional portion of the data value. The master must divide these values by the scale factor as necessary.

**For example:**
Register 30001 (16-bit high word) = 0002H  
Long word (32-bit) = 00023F8CH (decimal 147340)  
Divide by 10000, actual value = 147.340

4. Individual digital temperature

5. Average submerged temperature

6. \(\text{GOVP} = \text{Gross Observed Volume Product}\)

7. \(\text{GOVI} = \text{Gross Observed Volume Interface}\)

8. \(\text{GOVT} = \text{Gross Observed Volume Total}\)

9. \(\text{GOVU} = \text{Gross Observed Volume Ullage}\)
10. **NVSP = Net Standard Volume of Product**

11. **Temperature Correction Method**
   There are five methods to choose from:
   1 = (6A) Heavy Oils
   2 = (6B) Light Oils
   3 = (6C) Chemicals
   4 = Chemicals with wider coefficients than 6C and a movable reference temperature (6C Mod).
   5 = Custom Table.

12. **Thermal Expansion Coefficient (TEC)**
    Temperature correction method ‘6C’ uses the thermal expansion coefficient of the product being measured to determine the volume correction factor. Allowable values are 270.0 to 930.0. TEC Units are in 10E-6/Deg F.

13. **Density**
    Temperature correction method ‘6C’ and ‘Custom Table’ requires you to enter the density (at the given reference temperature) of the product being measured for the net mass calculation.

14. **Reference Temperature**
    This is the desired base temperature for the VCF calculation when Temperature Correction Method ‘6C Mod’ is used.

15. **Volume Calculation Mode**
    This is the mode you wish the volume calculations to be performed by:
    1 = Use Strap Table
    0 = Use Sphere Calculation

16. **Sphere Radius**
    The radius of the sphere when volume calculations are performed (using the sphere calculation mode).

17. **Sphere Offset**
    The offset of the sphere when volume calculations are performed (using the sphere calculation mode).

18. **Average Interval**
    All level, temperature and volume calculation can be averaged using timed method. Allowable values are as follows:
    0 = 1 second (default)
    5 = 5 seconds
    10 = 10 seconds
    15 = 15 seconds
    20 = 20 seconds
    25 = 25 seconds
    30 = 30 seconds
    35 = 35 seconds
    40 = 40 seconds
    45 = 45 seconds
    50 = 50 seconds
    55 = 55 seconds
    60 = 60 seconds

19. **Alarm/Status bit definitions**
    For each corresponding alarm bit:
    0 = ALARM OFF
    1 = ALARM ON
    Reserved bits will always be set to 0 (OFF).

20. **Volume Correction Factor Calculation Error Status**
    This value can only be read. If there is no error performing the volume correction factor then the value is zero otherwise, the value is a non-zero code and one of the following:
    1 = Invalid API value or invalid temperature input value for 6A or 6B VCF calculation.
    2 = Invalid API value or invalid temperature input range for 6A VCF calculation.
    3 = Invalid API value or invalid temperature input range for 6B VCF calculation.
    4 = Invalid API value or invalid temperature input value for 6C VCF calculation.
    5 = Invalid API value or invalid temperature range for 6C VCF calculation.
    6 = Invalid API value or invalid temperature range for 6C Wide VCF calculation.
    7 = Invalid delta temperature for 6C VCF calculation.
    8 = Interpolation error, temperature value not found in the table.
    9 = Invalid or No VCF method selected.

21. **Volume Calculation Error Status**
    This value can only be read. If there is no error performing the volume calculations then the value is zero otherwise the value is a non-zero code and one of the following:
    1 = Negative table entries are not allowed.
    2 = Interpolation error, level value not found in the table.
    3 = Sphere Calculation error, level exceeds sphere radius x 2.
    4 = Calculated a negative volume value.

22. **Undefined or reserved registers within the register map** will return a maximum negative value (8000H, or 80000000H for register pairs). Attempting to read registers outside the register map (35198 or higher) will cause a Modbus Exception Error Code 02 (Illegal Data Value) to be returned.
Temperature Units
The value for temperature units can be one of the following codes:
0 = Celsius
1 = Fahrenheit

Density Units High
The value for density units can be one of the following codes:
0 = Grams/Milliliters
1 = Grams/Liter
2 = Kilograms/Cubic Meters
3 = Kilograms/Liter
4 = Pounds/Cubic Inch
5 = Pounds/Cubic Foot
6 = Pounds/Gallon
7 = Tonnes/Cubic Meter
8 = Tons/Cubic Yard

Volume Units
The value for volume units can be one of the following codes:
0 = Liters
1 = Cubic Millimeters
2 = Cubic Meters
3 = Cubic Inches
4 = Cubic Feet
5 = Gallons
6 = Barrels

Length Units
The value for length units can be one of the following codes:
0 = Millimeters
1 = Centimeters
2 = Meters
3 = Kilometers
4 = Inches
5 = Feet
6 = Yards

Mass Units
The value for mass units can be one of the following codes:
0 = Kilograms
1 = Grams
2 = Ounces
3 = Pounds
4 = Tons
5 = Tonnes

Set New Device Address
This register will program the new device address. Valid values for Modbus are between: 1 – 247.

Alarm Units
This register programs the unit type for which you can configure alarms. Product and Interface can be 'Volume or 'Length' unit type, however Limit can only be 'Length' unit type.
Valid Values are as follows:
2 = Volume Units Type.
3 = Length Units Type.

Interface High Alarm
The value for which the Interface cannot be >=. Make sure the value is programmed in the current Alarm Units type. (See Note 29)

Interface Low Alarm
The value for which the Interface cannot be <=. Make sure the value is programmed in the current Alarm Units type. (See Note 29)

Product High Alarm
The value for which the Product cannot be >=. Make sure the value is programmed in the current Alarm Units type. (See Note 29)

Product Low Alarm
The value for which the Product cannot be <=. Make sure the value is programmed in the current Alarm Units type. (See Note 29)

Limit High Alarm
The value for which the Limit cannot be >=. This value can only be in unit type of Length. (See Note 29)

Limit Low Alarm
The value for which the Limit cannot be <=. This value can only be in unit type of Length. (See Note 29)

Temperature Average High Alarm
The value for which the Average Temperature cannot be >=.

Temperature Average Low Alarm
The value for which the Average Temperature cannot be <=.

Formulas used in volume calculation
1. \( GOVP = GOVT - GOVI \) (two float system)
   \( GOVP = GOVT \) (one float system)
   \( GOVT = GOVP + GOVI \) (two float system)
   \( GOVT = GOVP \) (one float system)
   \( GOVU = WORKING\,\,CAPACITY - GOVT \) (one or two float system)

   The gross observed volume of the product (GOVP) is equal to the total volume of the tank (GOVT) minus the interface volume (GOVI). The GOVT is measured by the product float (the float closest to the flange of the transmitter) and the GOVI is measured by the interface float (the float closest to the tip of the transmitter). The level information from the transmitter is used along with the strap table to calculate the corresponding gross observed volumes.

2. \( NSVP = GOVP \times VCF \)

   The net standard volume of the product (NSVP) is equal to the gross observed volume of the product (GOVP) multiplied by the volume correction factor (VCF). The VCF is calculated from thermal expansion properties of the product (programmed by the user) and the temperature information from the gauge. (see 4. VOLUME CORRECTION FACTOR) for details.
3. **MASS = NSVP x DENSITY**

The mass of the product (MASS) is equal to the net standard volume of the product (NSVP) multiplied by the density of the product (DENSITY) programmed by the user.

4. **VOLUME CORRECTION FACTOR**

\[
VCF = \exp\left\{-A(T) \times (t-T) \times [1 + (0.8 \times A(T) \times (t-T))]\right\}
\]

Where:
- \( t \) = any temperature*
- \( T \) = BASE TEMPERATURE (60 DEGREES F)
- \( A(T) = \) coefficient of thermal expansion at the base temperature \( T \)

Where:

\[
A(T) = \frac{[K0 + K1 \times \text{DEN}(T)]}{[\text{DEN}(T) \times \text{DEN}(T)]}
\]

Where:
- Density is defined in units of KG/M3
- K0 and K1 are constants related to each product.
- *API 2540 states that temperature data is rounded to the nearest tenth (0.1) degree.

This section includes all the constants used by the software to calculate the volume correction factors and valid ranges for the API (density) and temperature data.

<table>
<thead>
<tr>
<th>Constants</th>
<th>K0</th>
<th>K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A heavy oils</td>
<td>341.0952</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valid temperature range</th>
<th>Valid gravity ranges (API)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to +300.0 °F</td>
<td>0 to 40.0 °API</td>
</tr>
<tr>
<td>0 to +250.0 °F</td>
<td>40.1 to 50.0 °API</td>
</tr>
<tr>
<td>0 to +200.0 °F</td>
<td>50.1 to 85.0 °API</td>
</tr>
</tbody>
</table>

*For the transition group, \( A(T) = [K1 + K0 \times \text{DEN}(T) \times \text{DEN}(T)] \)

**TEC is the thermal expansion coefficient of the product being measured.

<table>
<thead>
<tr>
<th>Valid temperature range</th>
<th>Valid gravity ranges (API)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to +300.0 °F</td>
<td>100.0 to 999.0 °API</td>
</tr>
</tbody>
</table>

*For the transition group, \( A(T) = [K1 + K0 \times \text{DEN}(T) \times \text{DEN}(T)] \)

<table>
<thead>
<tr>
<th>Product type</th>
<th>Constants</th>
<th>Valid gravity ranges (API)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel oil</td>
<td>K0 = 103.8720</td>
<td>0.0 to 37.0 °API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.2701</td>
<td></td>
</tr>
<tr>
<td>Jet group</td>
<td>K0 = 330.3010</td>
<td>37.1 to 47.9 °API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.0</td>
<td></td>
</tr>
<tr>
<td>Transition group</td>
<td>K0 = 1489.0670</td>
<td>48.0 to 52.0 °API</td>
</tr>
<tr>
<td></td>
<td>K1 = -0.0018684</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>K0 = 192.4571</td>
<td>52.1 to 85.0 °API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.2438</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: 6B light oils

Table 4: 6C MOD

**Note:**

Volumetric modes 6C MOD and CUST TAB are not intended for custody transfer applications since they do not follow API standard 2540 exactly. The software for 6C MOD incorporates a moveable temperature reference and allows for a wider range of TEC values.
## United States
Temposonics, LLC  
Americas & APAC Region  
3001 Sheldon Drive  
Cary, N.C. 27513  
Phone: +1 919 677-0100  
E-mail: info.us@temposonics.com

## Germany
Temposonics GmbH & Co. KG  
EMEA Region & India  
Auf dem Schüffel 9  
58513 Lüdenscheid  
Phone: +49 2351 9587-0  
E-mail: info.de@temposonics.com

## Italy
Branch Office  
Phone: +39 030 988 3819  
E-mail: info.it@temposonics.com

## France
Branch Office  
Phone: +33 6 14 060 728  
E-mail: info.fr@temposonics.com

## UK
Branch Office  
Phone: +44 79 44 15 03 00  
E-mail: info.uk@temposonics.com

## Scandinavia
Branch Office  
Phone: +46 70 29 91 281  
E-mail: info.sca@temposonics.com

## China
Branch Office  
Phone: +86 21 2415 1000 / 2415 1001  
E-mail: info.cn@temposonics.com

## Japan
Branch Office  
Phone: +81 3 6416 1063  
E-mail: info.jp@temposonics.com

---

temposonics.com

© 2021 Temposonics, LLC – all rights reserved. Temposonics, LLC and Temposonics GmbH & Co. KG are subsidiaries of Amphenol Corporation. Except for any third party marks for which attribution is provided herein, the company names and product names used in this document may be the registered trademarks or unregistered trademarks of Temposonics, LLC or Temposonics GmbH & Co. KG. Detailed trademark ownership information is available at [www.temposonics.com/trademarkownership](http://www.temposonics.com/trademarkownership).