Data Sheet

R-Series V RH5 Analog
Magnetostrictive Linear Position Sensors

- Direct analog output, position + speed
- Dual magnet position measurement
- Field adjustments and diagnostics using the new TempoLink® smart assistant
MEASURING TECHNOLOGY

The absolute, linear position sensors provided by Temposonics rely on the company’s proprietary magnetostrictive technology, which can determine position with a high level of precision and robustness. Each Temposonics position sensor consists of a ferromagnetic waveguide, a position magnet, a strain pulse converter and supporting electronics. The magnet, connected to the object in motion in the application, generates a magnetic field at its location on the waveguide. A short current pulse is applied to the waveguide. This creates a momentary radial magnetic field and torsional strain on the waveguide. The momentary interaction of the magnetic fields releases a torsional strain pulse that propagates the length of the waveguide. When the ultrasonic wave reaches the end of the waveguide it is converted into an electrical signal. Since the speed of the ultrasonic wave in the waveguide is precisely known, the time required to receive the return signal can be converted into a linear position measurement with both high accuracy and repeatability.

R-SERIES V Analog

Temposonics® R-Series V brings very powerful sensor performance to meet the many demands of your application. The R-Series V is the long term solution for harsh environments that have high levels of shock and vibration. Sensor models with analog outputs (voltage/current) have options for one or two position magnets, and for single or dual output channels.

When the R-Series V Analog sensor is ordered with a single output channel for one position magnet, the output will be the measured position value presented in either voltage or current.

When the sensor is ordered with dual output channels the second output can be configured to report the position of the second magnet or the reverse position or velocity of one magnet or the temperature inside of the electronics housing. Other configurations can be adjusted using the TempoLink smart assistant.

With many outstanding features the R-Series V sensors are fit for a very broad range of applications.

TempoLink YOUR SMART ASSISTANT

The TempoLink smart assistant is an accessory for the R-Series V family of sensors that supports setup and diagnostics. For the R-Series V Analog model, it enables the adjustment of parameters like the output values for the zero and span setpoints and their locations on the sensor. For diagnostics and analysis of operational data the R-Series V sensors continuously track values such as total distance traveled by the position magnet, internal temperature of the sensor and the quality of the position signal. This additional information can be read out via TempoLink smart assistant even while the sensor remains operational in the application. TempoLink smart assistant is connected to the sensor via the power connection, which now adds bidirectional communication for setup and diagnostics. The TempoLink smart assistant is operated using a graphical user-interface that will be displayed on your smartphone, tablet, laptop or PC. Just connect your Wi-Fi-enabled device to TempoLink Wi-Fi access point and go to the website URL for the user-interface.
TECHNICAL DATA

Output

<table>
<thead>
<tr>
<th>Analog</th>
<th>Voltage: 0…10 / 0…−10 / +10…−10 VDC (min. controller load > 5 kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>4(0)…20/20…4(0) mA (min./max. load 0/500 Ω)</td>
</tr>
</tbody>
</table>

Measured output variables

Position for one or two position magnets.
Position + speed (without direction) or velocity (with direction) for one position magnet.
Position for one position magnet + temperature inside the sensor electronics housing

Measurement parameters

Position measurement

<table>
<thead>
<tr>
<th>Null/Span adjustment</th>
<th>100 % of electrical stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>16 bit (internal resolution 0.1 µm)</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>< ±0.01 % F.S. (minimum ±50 µm)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>< ±0.001 % F.S. (minimum ±1 µm)</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>< 4 µm</td>
</tr>
</tbody>
</table>

Velocity measurement

Range	0.01…10 m/s or 1…400 in./s
Deviation	≤ 0.05 %
Resolution	16 bit (minimum 0.01 mm/s)

Operating conditions

Operating temperature	−40…+85 °C (~−40…+185 °F)
Humidity	90 % relative humidity, no condensation
Temperature coefficient	< 30 ppm/K
Ingress protection	IP67 (connectors correctly fitted)/IP68 for cable outlet

Design / Material

Sensor electronics housing	Aluminum (painted), zinc die cast
Sensor flange	Stainless steel 1.4305 (AISI 303)/RH5-J: Stainless steel 1.4305 (AISI 303)
Sensor rod	Stainless steel 1.4306 (AISI 304L)/RH5-J: Stainless steel 1.4301 (AISI 304)
Stroke length	25…7620 mm (1…300 in.)/RH5-J: 25…5900 mm (1…232 in.)

Mechanical mounting

| Mounting position | Any |

| Mounting instruction | Please consult the technical drawings on page 4 |

Electrical connection

Connection type	1 × M16 male connectors (6 pin) or cable outlet
Operating voltage	12…30 VDC ±20 % (9.6…36 VDC)
Power consumption	< 3.25 W
Dielectric strength	500 VDC (DC ground to machine ground)
Polarity protection	Up to −36 VDC
Overvoltage protection	Up to 36 VDC

1/ With position magnet # 251 416-2
RH5-M/S-A/-V – RH5 with threaded flange M18×1.5 or ¾”-16 UNF-3A, example: Connector outlet D60

RH5-T-A/-V – RH5 with threaded flange ¾”-16 UNF-3A with raised-face, example: Cable outlet HXX/RXX/TXX

Mechanical option «B»: Bushing on rod end for threaded flange M18×1.5 or ¾”-16 UNF-3A

Mechanical option «M»: Thread M4 at rod end for threaded flange M18×1.5 or ¾”-16 UNF-3A

RH5-J-A/-V – RH5 with threaded flange M22×1.5 and Ø 12.7 mm rod, example: Connector outlet D60

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 3: Temposonics’ RH5 with ring magnet
CONNECTOR WIRING

D60

Signal + power supply

<table>
<thead>
<tr>
<th>M16 male connector</th>
<th>Output</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>View on sensor</td>
<td>1</td>
<td>1</td>
<td>Position (magnet 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Signal Ground</td>
</tr>
<tr>
<td></td>
<td>2*</td>
<td>3</td>
<td>Position (magnet 2) or reverse position (magnet 1) or speed or velocity (magnet 1) or temperature inside the sensor electronics housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Signal Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>+12…30 VDC (±20 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

* order dependent

HXX / RXX / TXX

Signal + power supply

<table>
<thead>
<tr>
<th>Cable</th>
<th>Output</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>D60</td>
<td>1</td>
<td>GY</td>
<td>Position (magnet 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PK</td>
<td>Signal Ground</td>
</tr>
<tr>
<td></td>
<td>2*</td>
<td>YE</td>
<td>Position (magnet 2) or reverse position (magnet 1) or speed or velocity (magnet 1) or temperature inside the sensor electronics housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GN</td>
<td>Signal Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN</td>
<td>+12…30 VDC (±20 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WH</td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

* order dependent

For cable type TXX, the extra red & blue wires are not used.

Fig. 4: Connector wiring D60

Fig. 5: Connector wiring for cable outlet
FREQUENTLY ORDERED ACCESSORIES – Additional options available in our Accessories Guide

Position magnets

Position magnet

Magnet spacer

O-rings

U-magnet OD33
Part no. 251 416-2
Material: PA ferrite GF20
Weight: Approx. 11 g
Surface pressure: Max. 40 N/mm²
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+105 °C (−40…+221 °F)

Ring magnet OD33
Part no. 201 542-2
Material: PA ferrite GF20
Weight: Approx. 14 g
Surface pressure: Max. 40 N/mm²
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+105 °C (−40…+221 °F)

Ring magnet OD25.4
Part no. 400 533
Material: PA ferrite coated
Weight: Approx. 13 g
Surface pressure: Max. 20 N/mm²
Operating temperature: −40…+100 °C (−40…+212 °F)

U-magnet OD33
Part no. 251 416-2
Material: PA ferrite GF20
Weight: Approx. 11 g
Surface pressure: Max. 40 N/mm²
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+105 °C (−40…+221 °F)

Ring magnet OD33
Part no. 201 542-2
Material: PA ferrite GF20
Weight: Approx. 14 g
Surface pressure: Max. 40 N/mm²
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+105 °C (−40…+221 °F)

Ring magnet OD25.4
Part no. 400 533
Material: PA ferrite coated
Weight: Approx. 13 g
Surface pressure: Max. 20 N/mm²
Operating temperature: −40…+100 °C (−40…+212 °F)

Position magnet

Magnet spacer

O-rings

Block magnet L
Part no. 403 448
Material: Plastic carrier with hard ferrite magnet
Weight: Approx. 20 g
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+75 °C (−40…+167 °F)
This magnet may influence the sensor performance specifications for some applications.

Block magnet L
Part no. 403 448
Material: Plastic carrier with hard ferrite magnet
Weight: Approx. 20 g
Fastening torque for M4 screws: 1 Nm
Operating temperature: −40…+75 °C (−40…+167 °F)
This magnet may influence the sensor performance specifications for some applications.

O-ring

Mounting accessories

O-ring for threaded flange
¾"-16 UNF-3A
Part no. 566 315
Material: Fluoroelastomer
Durometer: 75 ± 5 Shore A
Operating temperature: −40…+204 °C (−40…+400 °F)

O-ring for threaded flange
¾"-16 UNF-3A
Part no. 566 315
Material: Fluoroelastomer
Durometer: 75 ± 5 Shore A
Operating temperature: −40…+204 °C (−40…+400 °F)

O-ring for threaded flange
M18×1.5-6g
Part no. 481 133
Material: Fluoroelastomer
Durometer: 75 ± 5 Shore A
Operating temperature: −40…+204 °C (−40…+400 °F)

O-ring for threaded flange
M18×1.5-6g
Part no. 481 133
Material: Fluoroelastomer
Durometer: 75 ± 5 Shore A
Operating temperature: −40…+204 °C (−40…+400 °F)

Hex jam nut M18×1.5-6g
Part no. 500 018
Material: Steel, zinc plated

Hex jam nut ¾"-16 UNF-3A
Part no. 500 015
Material: Steel, zinc plated

Fixing clip
Part no. 561 481
Application: Used to secure sensor rods (Ø 10 mm (Ø 0.39 in.)) when using an U-magnet or block magnet
Material: Brass, non-magnetic
Cable connectors*

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16 female connector (6 pin), straight</td>
<td>370 423</td>
</tr>
<tr>
<td>M16 female connector (6 pin), angled</td>
<td>370 460</td>
</tr>
<tr>
<td>TempoLink® kit for Temposonics® R-Series V</td>
<td>TL-1-0-AD60 for D60</td>
</tr>
<tr>
<td>Hand programmer for analog output</td>
<td>253 124</td>
</tr>
<tr>
<td>M16 female connector (6 pin), straight, angled</td>
<td>Part no. 370 423</td>
</tr>
<tr>
<td>M16 female connector (6 pin), angled, angled</td>
<td>Part no. 370 460</td>
</tr>
<tr>
<td>TempoLink® kit for Temposonics® R-Series V</td>
<td>Part no. TL-1-0-AD60 for D60</td>
</tr>
<tr>
<td>Hand programmer for analog output</td>
<td>Part no. 253 124</td>
</tr>
</tbody>
</table>

Programming tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet programmer for analog output</td>
<td>253 408</td>
</tr>
<tr>
<td>PVC cable</td>
<td>530 032</td>
</tr>
<tr>
<td>PUR cable</td>
<td>530 052</td>
</tr>
<tr>
<td>Teflon® cable</td>
<td>530 112</td>
</tr>
</tbody>
</table>

Programming tool

- **Material:** Zinc nickel plated
- **Termination:** Solder
- **Cable Ø:** 6…8 mm (0.24…0.31 in.)
- **Operating temperature:** −40…+100 °C (−40…+212 °F)
- **Ingress protection:** IP65/IP67 (correctly fitted)
- **Fastening torque:** 0.6 Nm

Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet programmer for analog output</td>
<td>253 408</td>
</tr>
<tr>
<td>PVC cable</td>
<td>530 032</td>
</tr>
<tr>
<td>PUR cable</td>
<td>530 052</td>
</tr>
<tr>
<td>Teflon® cable</td>
<td>530 112</td>
</tr>
</tbody>
</table>

Programming tool

- Easy teach-in-sets up of stroke length and direction on desired zero / span positions. For sensors with 1 magnet.

Cables

- **Material:** PVC jacket; gray
- **Features:** Twisted pair, shielded, flexible
- **Cable Ø:** 6 mm (0.23 in.)
- **Cross section:** 3 × 2 × 0.14 mm²
- **Bending radius:** 10 × D (fixed installation)
- **Operating temperature:** −40…+105 °C (−40…+221 °F)

- **Material:** PUR jacket; orange
- **Features:** Twisted pair, shielded, highly flexible, halogen free, suitable for drag chains, mostly oil & flame resistant
- **Cable Ø:** 6.4 mm (0.25 in.)
- **Cross section:** 3 × 2 × 0.25 mm²
- **Bending radius:** 5 × D (fixed installation)
- **Operating temperature:** −30…+80 °C (−22…+176 °F)

- **Material:** Teflon® jacket; black
- **Features:** Twisted pair, shielded, flexible, high thermal resistance, mostly oil & acid resistant
- **Cable Ø:** 7.6 mm (0.3 in.)
- **Cross section:** 4 × 2 × 0.25 mm²
- **Bending radius:** 8 – 10 × D (fixed installation)
- **Operating temperature:** −100…+190 °C (−148…+356 °F)

*/ Follow the manufacturer’s mounting instructions

Controlling design dimensions are in millimeters and measurements in () are in inches*
Extension cables

PVC cable with M16 female connector (6 pin), straight – pigtail

PVC cable (part no. 530 032) with M16 female connector, straight (part no. 370 423)

Order code: **MTS-A-370423-xxxx-530032-0**
(where xxxx is the cable length in centimeters (e.g. code: 0150))

PUR cable with M16 female connector (6 pin), straight – pigtail

PUR cable (part no. 530 052) with M16 female connector, straight (part no. 370 423)

Order code: **MTS-A-370423-xxxx-530052-0**
(where xxxx is the cable length in centimeters (e.g. code: 0150))

Teflon® cable with M16 female connector (6 pin), straight – pigtail

Teflon® cable (part no. 530 112) with M16 female connector, straight (part no. 370 423)

Order code: **MTS-A-370423-xxxx-530112-0**
(where xxxx is the cable length in centimeters (e.g. code: 0150))

Standard cable lengths

<table>
<thead>
<tr>
<th>Meters</th>
<th>Feet</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>5</td>
<td>0150</td>
</tr>
<tr>
<td>2</td>
<td>6.6</td>
<td>0200</td>
</tr>
<tr>
<td>4.6</td>
<td>15</td>
<td>0460</td>
</tr>
<tr>
<td>5</td>
<td>16.4</td>
<td>0500</td>
</tr>
<tr>
<td>7.6</td>
<td>25</td>
<td>0760</td>
</tr>
<tr>
<td>10</td>
<td>32.8</td>
<td>1000</td>
</tr>
<tr>
<td>15.2</td>
<td>50</td>
<td>1520</td>
</tr>
</tbody>
</table>

For additional extension cables reference the accessory catalog (551444), page 41 for industrial sensors.
ORDER CODE

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| R | H | 5 | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u |

a Sensor model

R | H | 5 | Rod

b Design

B | Base unit (only for replacement)
J | Threaded flange M22x1.5-6g (rod Ø 12.7 mm), stroke length: 25…5900 mm (1…232 in.)
M | Threaded flange M18x1.5-6g (standard)
S | Threaded flange ¼"-16 UNF-3A (standard)
T | Threaded flange ¼"-16 UNF-3A (with raised-face)

c Mechanical options

A | Standard
B | Bushing on rod end (only for design »M«, »S« & »T«)
M | Thread M4 at rod end (only for design »M«, »S« & »T«)
V | Fluorelastomer seals for the sensor electronics housing

d Stroke length

X | X | X | X | M | 0025…7620 mm

Standard stroke length (mm) | Ordering steps
25…500 mm | 5 mm
500…750 mm | 10 mm
750…1000 mm | 25 mm
1000…2500 mm | 50 mm
2500…5000 mm | 100 mm
5000…7620 mm | 250 mm

X | X | X | X | U | 001.0…300.0 in.

Standard stroke length (in.) | Ordering steps
1…20 in. | 0.2 in.
20…30 in. | 0.4 in.
30…40 in. | 1.0 in.
40…100 in. | 2.0 in.
100…200 in. | 4.0 in.
200…300 in. | 10.0 in.

Non-standard stroke lengths are available; must be encoded in 5 mm/0.1 in. increments.

e Number of magnets

D | X | 01…02 Position(s) (1…2 magnet(s))

f Connection type

D | 6 | 0 | M16 male connector (6 pin)
H | X | X | XX m PUR cable (part no. 530 052)
H01…H30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
R | X | X | XX m PVC cable (part no. 530 032)
R01…R30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
T | X | X | XX m Teflon® cable (part no. 530 112)
T01…T30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications

*/ Encode in meters if using metric stroke length.
Encode in feet if using US customary stroke length

g System

1 | Standard

h Output

A | Current
V | Voltage

i Function

1 | Position (1 or 2 magnets/outputs)
2 | Position and speed (1 magnet and 2 outputs)
3 | Position and velocity (1 magnet and 2 outputs)
4 | Position and reverse position (1 magnet and 2 outputs)
5 | Position and temperature inside the sensor electronics housing (1 magnet and 2 outputs)
6 | Differential (2 magnets and 1 output)

j Options

0 | Standard
3 | Over range output mode

k Output range

0 | 0…10 VDC or 4…20 mA
1 | 10…0 VDC or 20…4 mA
2 | -10…+10 VDC or 0…20 mA
3 | +10…-10 VDC or 20…0 mA
V | 0…10 VDC for position, -10…+10 VDC for velocity

| 9 |
Max speed or velocity value

(Optional: use when “Function” is 2 or 3)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

- For metric stroke lengths encode speed or velocity in m/s for the values 0.01 to 9.99 m/s (001…999)
- For US customary stroke lengths encode speed or velocity in inches/s for the values 1 to 400 in./s (001…400)

Use the codes (00E) for 0.025 m/s, and (A00) for 10.0 m/s to provide backwards compatibility for these predecessor models of the R-Series.

NOTICE

- Specify the number of magnets for your application and order the magnets separately.
- The number of magnets is limited by the stroke length.
 - The minimum allowed distance between magnets (i.e. front face of one to the front face of the next one) is 75 mm (3 in.).
- Use magnets of the same type for multi-position measurement, e.g. 2 × U-magnet (part no. 251 416-2).

DELIVERY

RH5-B:
- Base unit (without flange/rod assembly)
- 3 socket screws M4

RH5-J/-M/-S/-T:
- Sensor
- O-ring

Accessories have to be ordered separately.

GLOSSARY

A

Analog output

For a sensor with analog output, the measured value is output as an analog voltage signal or current signal.

D

Differential

For differential measurement, the distance between the two position magnets is output as a value.

M

Max speed or velocity value

For speed or velocity, the output value generated is scaled based on the maximum speed or velocity value indicated in the order code.

Measuring direction

- **Forward:** Values increasing from sensor electronics housing to rod end/profile end
- **Reverse:** Values decreasing from sensor electronics housing to rod end/profile end

Multi-position measurement

During the measurement cycle, the positions of every magnet on the sensor are simultaneously reported. The velocity or speed are continuously calculated based on these changing position values as the magnets are moved.

O

Over range output mode

When enabled this mode allows the position output values to continue to increase or decrease when the magnet travels beyond the active stroke range.

R

Resolution

The sensor precisely measures time to provide the position measurement. For the analog output the measured time value is converted into an analog voltage signal or current signal using a high-performance Digital to Analog Converter (DAC) having 16 bits of resolution.

S

Speed

The output value for speed indicates how fast the position magnet is being moved, independent of the measuring direction. (→ Velocity)

T

Temperature inside the sensor electronics housing

The temperature inside the sensor electronics housing is reported as an analog voltage signal or current signal. For each output range, the 0 % output value has the factory default setpoint at −40 °C, and the 100 % output value has the default setpoint at +100 °C.

Note: a dedicated temperature chip is used for the output signal and its values may vary from those reported on the TempoLink application screen.

V

Velocity

The output value for velocity indicates how fast the position magnet is being moved, and in which direction. (→ Speed)

Manuals, Software & 3D Models available at: www.temposonics.com