Tempsonics®
Magnetostrictive Linear Position Sensors

GTE Analog
Operation Manual
Table of contents

1. **Introduction** .. 3
 1.1 Purpose and use of this manual .. 3
 1.2 Used symbols and warnings ... 3
2. **Safety instructions** ... 6
 2.1 Intended use .. 3
 2.2 Forseeable misuse .. 3
 2.3 Installation, commissioning and operation ... 4
 2.4 Safety instructions for use in explosion-hazardous areas ... 5
 2.5 Warranty .. 5
 2.6 Return ... 5
3. **Identification** ... 6
 3.1 Order code of Temposonics® GTE ... 6
 3.2 Nameplate .. 7
 3.3 Approvals ... 7
 3.4 Scope of delivery ... 7
4. **Product description and commissioning** .. 8
 4.1 Functionality and system design ... 8
 4.2 Styles and installation of Temposonics® GTE .. 9
 4.3 Electrical connection ... 10
 4.4 Frequently ordered accessories .. 10
5. **Installation** .. 10
 5.1 Measuring range ... 10
 5.2 Mounting instructions ... 10
 5.3 Safety screw .. 11
6. **Inspection, maintenance, others** ... 11
 6.1 Assembly, disassembly ... 11
 6.2 Inspection and maintenance .. 11
 6.3 Fault clearance ... 11
 6.4 Disposal ... 11
7. **Technical data Temposonics® GTE Analog ATEX / NEC / CEC** 12
8. **Certifications** .. 13
9. **Declaration of conformity of GTE Analog** .. 13
10. **Appendix** .. 14
1. Introduction

1.1 Purpose and use of this manual

Before starting the operation of Temposonics® position sensors, read this documentation thoroughly and follow the safety information. Keep this manual for future reference!

The content of this technical documentation and of its appendix is intended to provide information on mounting, installation and commissioning by qualified automation personnel or instructed service technicians who are familiar with the project planning and dealing with Temposonics® sensors.

1.2 Used symbols and warnings

Warnings are intended for your personal safety and for avoidance of damage to the described product or connected devices. In this documentation, safety information and warnings to avoid dangers that might affect the life and health of operating or service personnel or cause material damage are highlighted by the preceding pictograms, which are defined below.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Notice]</td>
<td>This symbol is used to point to situations that may lead to material damage, but not to personal injury.</td>
</tr>
<tr>
<td>![I]</td>
<td>This sign identifies an important information</td>
</tr>
<tr>
<td>![Ex]</td>
<td>Information related to potential explosion hazards and its protective measures.</td>
</tr>
</tbody>
</table>

2. Safety instructions

2.1 Intended use

This product may be used only for the applications defined under item 1 and only in conjunction with the third-party devices and components recommended or approved by MTS Sensors. As a prerequisite of proper and safe operation the product requires correct transport, storage, mounting and commissioning and must be operated with utmost care.

1. The position measurement systems of all Temposonics® series are intended exclusively for measurement in industrial, trade and laboratory applications. The position sensors are considered as system accessories and must be connected to a suitable unit for electronic evaluation as e.g. included in a PLC, IPC, indicator or other electronic control facility.
2. The position sensors must be used only in safe condition. In order to maintain this condition and to ensure safe operation, installation, connection and service may be done only by specialized and qualified personnel.
3. The position sensor is intended to be embedded into a metallic hydraulic cylinder which protects it from external mechanical impacts.
4. The sensor’s surface temperature class is T4.
5. The position sensor may be used in the Zones (ATEX, IECEX) and Classes, Zones and Divisions (CEC, NEC) according to chapter 8.

2.2 Foreseeable misuse

<table>
<thead>
<tr>
<th>Forseeable misuse</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead compensating currents through the enclosure</td>
<td>The sensor will be damaged</td>
</tr>
<tr>
<td>Wrong sensor connection</td>
<td>The sensor will not work properly or will be destroyed</td>
</tr>
<tr>
<td>Operate the sensor out of the operating temperature range</td>
<td>No signal output / The sensor can be damaged</td>
</tr>
<tr>
<td>Power supply is out of the defined range</td>
<td>Signal output is wrong / no signal output / the sensor will be damaged</td>
</tr>
<tr>
<td>Position measurement is influenced by an external magnetic field</td>
<td>Signal output is wrong</td>
</tr>
<tr>
<td>Cables are damaged</td>
<td>Short circuit – the sensor can be destroyed / sensor does not respond</td>
</tr>
<tr>
<td>Spacers are missing / are installed in a wrong order</td>
<td>Error in position measurement</td>
</tr>
<tr>
<td>Wrong connection of ground / shield</td>
<td>Signal output is disturbed / The electronics can be damaged</td>
</tr>
<tr>
<td>Use of a magnet that is not certified by MTS Sensors</td>
<td>Error in position measurement</td>
</tr>
</tbody>
</table>

1/ The term “qualified technical personnel” characterizes persons who:
- are familiar with the safety concepts of automation technology applicable to the particular project
- are competent in the field of electromagnetic compatibility (EMC)

- have received adequate training for commissioning and service operations
- are familiar with the operation of the device and know the information required for correct operation provided in the product documentation
- have a qualification similar to "authorized person" according to TRBS 1203
2.3 Installation, commissioning and operation

The position sensor is an electrical apparatus for use in Zone 2 (ATEX/IECEx), Class I/II/III Div. 2 and Zone 2 and Zone 22 (NEC/CEC) and must be used only in technically safe condition. To maintain this condition and to ensure safe operation, installation, connection and service, work may be performed only by qualified technical personnel, according to IEC 60079-14 and local regulations.

If danger of injury to persons or of damage to operating equipment is caused by sensor failure or malfunction, additional safety measures such as plausibility checks, limit switches, EMERGENCY STOP systems, protective devices etc. are required. In the event of trouble, shut down the sensor and protect it against accidental operation.

2.3.1 Safety instructions for commissioning

To maintain the sensor’s operability, it is mandatory to follow the instructions given below.

1. Follow the specifications given in the technical data.
2. Ensure that equipment and associated components used in a hazardous environment are selected and installed in compliance with regulations governing the geographical location and facility. Only install equipment that complies with the types of protection relevant to the applicable Classes, Zones, Divisions and Groups.
3. In explosive atmospheres use only such auxiliary components that meet all requirements of the local and national standards.
4. The potential equalisation of the system has to be established according to the regulations of erection applicable in the respective country of use (VDE 0100 part 540; IEC 364-5-54).
5. Sensors from MTS Sensors are approved only for the intended use in industrial environments (see chapter “2.1 Intended use” on page 3). Contact the manufacturer for advice if aggressive substances are present in the sensor environment.
6. Measures for lightning protection have to be taken by the user.
7. The user is responsible for the mechanical protection of the sensor.
8. The sensor may be used only for fixed installations with permanently wired cables. The user shall ensure that cables and cable glands correspond to the risk assessment of the hazardous application as well as to thermic, chemical and mechanical environmental conditions. The user is also responsible for the required strain relief. When selecting the sealing, the maximum thermal load of the cables must be taken into account.
9. The user is responsible for meeting all safety conditions as outlined by:
 - Installation instructions
 - Local prevailing standards and regulations
10. Any parts of the equipment which got stuck (e.g. by frost or corrosion) may not be removed by force if potentially explosive atmosphere is present.
11. The surface temperatures of equipment parts must be kept clearly below the ignition temperature of the foreseeable air/dust mixtures in order to prevent the ignition of suspended dust.

2.3.2 How to ensure safe commissioning

1. Protect the sensor against mechanical damage during installation and operation.
2. Do not use damaged products and secure them against unintentional commissioning. Mark damaged products as being defective.
3. Do not open or disassemble the sensor.
4. Do not open whilst energised.
5. Do not open when an explosive atmosphere is present.
6. The clamping test of the cable entry was carried out with a reduced value, so it has to be ensured that pulling and twisting of the cable is not transmitted to the terminations.
7. The mechanical protection of the sensor has to be provided by the cylinder in which the sensor is embedded.
8. Prevent electrostatic charges.
9. Do not use the sensor in cathodic systems for corrosion protection. Do not allow parasitic currents on the sensor housing.
10. Switch off the supply voltage prior to disconnecting or connecting the connectors.
11. Connect the sensor very carefully and pay attention to the polarity of connections, power supply as well as to the shape and duration of control pulses.
12. Cable entry temperature and branching point temperature may reach +75 °C (+167 °F) for power option 1. Select suitable cable and entry device.
13. For field wiring, use cables suitable for the service temperature range of –20 °C (–4 °F) to +75 °C (+167 °F).
14. Use only approved power supplies of Category II according to IEC 61010-1.
15. Ensure that the specified permissible limit values of the sensor for operating voltage, environmental conditions, etc. are met.
16. Make sure that:
• the sensor and associated components were installed according to the instructions
• the sensor enclosure is clean
• the magnet does not grind on the rod. This could cause damage to the magnet and the sensor rod. If there is contact between the moving magnet (including the magnet holder) and the sensor rod, make sure that the maximum speed of the moving magnet is less or equal 1 m/s.

17. Grounding of the system (sensor + cylinder) to the local earth has to be done at the metallic cylinder. To ensure proper electrical grounding, the connection between the sensor housing and the metallic cylinder (or housing) must be ensured by fasteners (e.g., screws).

18. Before applying power, ensure that nobody's safety is jeopardized by starting machines.

19. Check the function of the sensor regularly and provide documentation of the checks (see chapter “6.2 Inspection and Maintenance” on page 10).

2.4 Safety instructions for use in explosion-hazardous areas

The sensor has been designed for operation inside explosion-hazardous areas. It has been tested and left the factory in a condition in which it is safe to operate. Relevant regulations and standards have been observed. According to the marking (ATEX and NEC/CEC) the sensor is approved only for operation in defined hazardous areas (see chapter “2.1 Intended use” on page 3 and table in chapter 8).

2.5 Warranty

MTS Sensors grants a warranty period for the Temposonics® position sensors and supplied accessories relating to material defects and faults that occur despite correct use in accordance with the intended application. The MTS Sensors obligation is limited to repair or replacement of any defective part of the unit. No warranty can be provided for defects that are due to improper use or above average stress of the product, as well as for wear parts. Under no circumstances will MTS Sensors accept liability in the event of offense against the warranty rules, no matter if these have been assured or expected, even in case of fault or negligence of the company. MTS Sensors explicitly excludes any further warranties. Neither the company's representatives, agents, dealers nor employees are authorized to increase or change the scope of warranty.

2.6 Return

For diagnostic purposes, the sensor can be returned to MTS Sensors or a repair facility explicitly authorized by MTS Sensors. Any shipment cost is the responsibility of the sender. For a corresponding form, see chapter “10. Appendix” on page 14.

NOTICE

When returning sensors, place protective caps on male and female connectors of the sensor. For pigtail cables, place the cable ends in a static shielding bag for electrostatic discharge (ESD) protection. Fill the outer packaging around the sensor completely to prevent damage during transport.
3. Identification

3.1 Order code of Temposonics® GTE

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Sensor model</td>
</tr>
<tr>
<td>G</td>
<td>Embedded pressure-fit flange Ø 60 mm (2.36 in.)</td>
</tr>
<tr>
<td>b</td>
<td>Stroke length</td>
</tr>
<tr>
<td>X</td>
<td>0050…2540 mm</td>
</tr>
<tr>
<td>Standard stroke length (mm)</td>
<td>Ordering steps</td>
</tr>
<tr>
<td>50… 500 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>500… 750 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>750…1000 mm</td>
<td>25 mm</td>
</tr>
<tr>
<td>1000…2540 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>X</td>
<td>002.0…100.0 in.</td>
</tr>
<tr>
<td>Standard stroke length (in.)</td>
<td>Ordering steps</td>
</tr>
<tr>
<td>2… 20 in.</td>
<td>0.2 in.</td>
</tr>
<tr>
<td>20… 30 in.</td>
<td>0.4 in.</td>
</tr>
<tr>
<td>30… 40 in.</td>
<td>1.0 in.</td>
</tr>
<tr>
<td>40…100 in.</td>
<td>2.0 in.</td>
</tr>
<tr>
<td>c</td>
<td>Connection type</td>
</tr>
<tr>
<td>B</td>
<td>1 m/3 ft. TPV cable (part no. 530 162)</td>
</tr>
<tr>
<td>B</td>
<td>3 m/10 ft. TPV cable (part no. 530 162)</td>
</tr>
<tr>
<td>B</td>
<td>5 m/16 ft. TPV cable (part no. 530 162)</td>
</tr>
<tr>
<td>d</td>
<td>Operating voltage</td>
</tr>
<tr>
<td>T</td>
<td>+24 VDC (–15/+20 %) (T_{amb} max. +75 °C (+167 °F))</td>
</tr>
<tr>
<td>A</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>A</td>
<td>20…4 mA</td>
</tr>
<tr>
<td>A</td>
<td>0…20 mA</td>
</tr>
<tr>
<td>A</td>
<td>20…0 mA</td>
</tr>
<tr>
<td>V</td>
<td>0…+10 VDC</td>
</tr>
<tr>
<td>V</td>
<td>+10…0 VDC</td>
</tr>
<tr>
<td>V</td>
<td>–10…+10 VDC</td>
</tr>
<tr>
<td>V</td>
<td>+10…–10 VDC</td>
</tr>
<tr>
<td>Optional:</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Approved version</td>
</tr>
</tbody>
</table>

Non-standard stroke lengths are available; must be encoded in 5 mm/0.1 in. increments.
3.2 Nameplate

Fig. 1: Example of a nameplate of a GTE sensor

3.3 Approvals

Class I Zone 2 AEx/Ex nA IIC T4 Gc
Class II/III Zone 22 AEx tc/Ex tc IIC T130 °C Dc
Class I/II/III Div 2 T4 ABCDEFG
II 3G Ex nA IIC T4 Gc
IECEx BVS 13.0063X
–20 °C ≤ +75 °C (–4 °F ≤ +167 °F)

3.4 Scope of delivery

GTE (rod sensor):
• Sensor
• O-ring
• Back-up ring
4. Product description and commissioning

4.1 Functionality and system design

Product designation
- Position sensor Temposonics® G-Series

Sensor model
- Temposonics® GTE (rod sensor)

Stroke length
- Stroke length: 50...2540 mm (2...100 in.)

Output signal
- Analog

Application
Temposonics® position sensors are used for measurement and conversion of the length (position) variable in the fields of automated systems and mechanical engineering.

The GTE type sensors consist of several (in this case two) independent sensor channels in one housing for redundancy. That means, they contain two waveguides, two independent electronics and two output cables.

The adjustment of the setpoints (null/span) is possible in 100 % of the electronical stroke length with 50 mm (2 in.) minimum distance between each setpoint.

The GTE sensors are designed as sensors to be embedded into hydraulic cylinders. This means that part of the mechanical protection is done by the hydraulic cylinder rather than by the sensor itself.

Principle of operation and system construction
The absolute, linear position sensors provided by MTS Sensors rely on the company's proprietary Temposonics® magnetostrictive technology, which can determine position with a high level of precision and robustness.

Each Temposonics® position sensor consists of a ferromagnetic waveguide, a position magnet, a strain pulse converter and supporting electronics. The magnet, connected to the object in motion in the application, generates a magnetic field at its location on the waveguide.

A short current pulse is applied to the waveguide. This creates a momentary radial magnetic field and torsional strain on the waveguide. The momentary interaction of the magnetic fields releases a torsional strain pulse that propagates the length of the waveguide. When the ultrasonic wave reaches the end of the waveguide it is converted into an electrical signal. Since the speed of the ultrasonic wave in the waveguide is precisely known, the time required to receive the return signal can be converted into a linear position measurement with both high accuracy and repeatability.
4.2 Styles and installation of Temposonics® GTE

GTE Analog ATEX / NEC / CEC

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 3: Temposonics® GTE with ring magnet

4.3 Electrical connection

Connector wiring
Connect the sensor directly to the control system, indicator or other evaluating systems as follows:

<table>
<thead>
<tr>
<th>Cable</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GY</td>
<td></td>
<td>Position</td>
</tr>
<tr>
<td>PK</td>
<td></td>
<td>Return for output</td>
</tr>
<tr>
<td>YE</td>
<td></td>
<td>Programming (RS-485 +)</td>
</tr>
<tr>
<td>GN</td>
<td></td>
<td>Programming (RS-485 –)</td>
</tr>
<tr>
<td>BN</td>
<td></td>
<td>Supply voltage</td>
</tr>
<tr>
<td>WH</td>
<td></td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

Shield Only connected on controller side

Fig. 4: Connector wiring: 6-wire shielded cable
4.4 Frequently ordered accessories – Additional options available in our Accessories Guide [551444]

<table>
<thead>
<tr>
<th>Position magnets</th>
<th>Magnet spacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-magnet OD33</td>
<td>U-magnet OD33</td>
</tr>
<tr>
<td>Part no. 251 416-2</td>
<td>Part no. 201 542-2</td>
</tr>
<tr>
<td>Material: PA ferrite GF20</td>
<td>Material: PA ferrite GF20</td>
</tr>
<tr>
<td>Weight: Approx. 11 g</td>
<td>Weight: Approx. 14 g</td>
</tr>
<tr>
<td>Surface pressure: Max. 40 N/mm²</td>
<td>Surface pressure: Max. 40 N/mm²</td>
</tr>
<tr>
<td>Fastening torque for M4 screws: 1 Nm</td>
<td>Fastening torque for M4 screws: 1 Nm</td>
</tr>
<tr>
<td>Operating temperature: −40°…+105 °C (−40°…+221 °F)</td>
<td>Operating temperature: −40°…+105 °C (−40°…+221 °F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring magnet OD33</th>
<th>Ring magnet OD25.4</th>
<th>Magnet spacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 201 542-2</td>
<td>Part no. 400 533</td>
<td>Part no. 400 633</td>
</tr>
<tr>
<td>Material: PA ferrite GF20</td>
<td>Material: PA ferrite</td>
<td>Material: Aluminum</td>
</tr>
<tr>
<td>Weight: Approx. 10 g</td>
<td>Weight: Approx. 10 g</td>
<td>Weight: Approx. 5 g</td>
</tr>
<tr>
<td>Surface pressure: Max. 40 N/mm²</td>
<td>Surface pressure: Max. 20 N/mm²</td>
<td>Surface pressure: Max. 20 N/mm²</td>
</tr>
<tr>
<td>Fastening torque for M4 screws: 1 Nm</td>
<td>Fastening torque for M4 screws: 1 Nm</td>
<td>Fastening torque for M4 screws: 1 Nm</td>
</tr>
</tbody>
</table>

Programm tool

Hand programmer for analog output
Part no. 253 853

Easy teach-in-setups of stroke length and direction on desired zero/span positions. For sensors with 1 magnet.

5. Installation

5.1 Measuring range

All the technical data of each Temposonics® sensor are checked and recorded at the final quality inspection. At the same time the active electrical stroke is programmed.

NOTICE

On all sensors, the areas left and right of the active stroke length are provided for null and dead zone. These zones should not be used for measurement, however the active stroke length can be exceeded.

![Diagram of null zone, active stroke length, dead zone](image)

Fig. 5: Null zone, active stroke length, dead zone

Controlling design dimensions are in millimeters and measurements in () are in inches
5.3 Safety screw

A M5×10 set screw to ISO 4026 with flat point should be used. This safety screw is only required for blocking the sensor housing in axial direction and needs to butt only against the groove, i.e. the screw may be tightened only with a torque of 0.5 Nm to prevent damaging the sensor. The set screw should be inserted with a resolvable safety adhesive, e.g. Loctite blue.

Set screw

- e.g. retaining with set screw ISO 4026 M5×10 (with flat point!).
- Fastening torque: 0.44 Nm to 0.50 Nm
- Notice: Ensure threads are free of oil, grease and debris

Fig. 6: Set screw for GTE sensor

NOTICE

The safety screw must be sealed to prevent moisture or liquid from passing through during the cylinder production or later when the machine is operating.

6. Inspection, maintenance, others

6.1 Assembly, disassembly

During assembly and disassembly, it is important to follow best practices for working with electronic components.

Before using the device, please ensure the following:
- The device is installed according to the local and national regulations.
- The requirements for the applicable explosion category were taken into account.
- The device is not damaged.
- The installation location is clean.

6.2 Inspection and maintenance

Follow the definitions and regulations according to IEC 60079-17. Annual inspection should be conducted for the housing that contains the embedded sensor to ensure proper grounding.

6.3 Fault clearance

No modifications of the sensors are allowed.

6.4 Disposal

The disposal of the packaging materials and used parts has to take place according to the regulations of the country in which the device is installed.
7. Technical data Temposonics® GTE Analog ATEX / NEC / CEC

<table>
<thead>
<tr>
<th>Output</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0…10 VDC, 10…0 VDC, −10…+10 VDC</td>
<td>4…20 mA, 20…4 mA, 0…20 mA, 20…0 mA</td>
</tr>
<tr>
<td></td>
<td>(minimum controller load: > 5k Ω)</td>
<td>(minimum/maximum load: 0/500 Ω)</td>
</tr>
</tbody>
</table>

Measurement parameters

<table>
<thead>
<tr>
<th>Resolution: Position</th>
<th>Infinite (restricted by output ripple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time</td>
<td>< 1 ms (typical)</td>
</tr>
<tr>
<td>Linearity deviation</td>
<td>< ±0.02 % F.S. (minimum ±50 µm)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>< ±0.001 % F.S. (minimum ±2.5 µm)</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>< 4 µm</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Operating temperature</th>
<th>−40…+75 °C (−40…+167 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>90 % relative humidity, no condensation</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP64</td>
</tr>
<tr>
<td>Shock test</td>
<td>100 g (single shock) according to IEC 60068-2-27 (survivability)</td>
</tr>
<tr>
<td>Vibration test</td>
<td>10 g/10…2000 Hz according to IEC 60068-2-6 (resonance frequencies excluded)</td>
</tr>
<tr>
<td>EMC test</td>
<td>Electromagnetic emission according to EN 61326-1 and EN 55011 Magnetic immunity according to EN 61326-1</td>
</tr>
</tbody>
</table>

The sensor meets the requirements of the EC directives and is marked with C

| Operating pressure | 350 bar static (5076 psi static), 690 bar peak (10,000 psi peak) |

Agency approvals (optional)

- Class I Zone 2 AEx/Ex nA IIC T4 Gc
- Class II / III Zone 22 AEx tc / Ex tc IIC T130 °C Dc
- Class I / II / III Div 2 T4 ABCDEFG
- EX iIC T4 Gc
- IECEx BVS 13.0063X
- −20 °C ≤ T < +75 °C (−4 °F ≤ T < +167 °F)

Design / Material

- Sensor electronics housing: Stainless steel 1.4305 (AISI 303)
- Sensor rod: Stainless steel 1.4306 (AISI 304L)
- Stroke length: 50…2540 mm (2…100 in.)

Mechanical mounting

- Mounting position: Any
- Mounting instruction: Please consult the technical drawing on page 9

Electrical connection

- Connection type: Cable output
- Operating voltage: +24 VDC (−15/+20 %)
- Current consumption: 100 mA typical per channel
- Dielectric strength: 700 VDC (DC ground to machine ground)
- Polarity protection: Up to −30 VDC
- Overvoltage protection: Up to 36 VDC
8. Certifications

<table>
<thead>
<tr>
<th>Certification required</th>
<th>GTE:xxxxx-Bxx-1-xx-EX (+24 VDC (−15/+20 %))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IECEx / ATEX</td>
<td>Ex na IIC T4 Gc</td>
</tr>
<tr>
<td>(IECEx: Global market; ATEX: Europe)</td>
<td>Zone 2 −40 °C ≤ Ta ≤ +75 °C (−40 °F ≤ Ta ≤ +167 °F)</td>
</tr>
<tr>
<td>NEC (USA)</td>
<td>Class I/II/III Div 2 T4 Groups ABCDEFG</td>
</tr>
<tr>
<td></td>
<td>Class I, Zone 2, AEx na IIC T4</td>
</tr>
<tr>
<td></td>
<td>Class II/III, Zone 22, AEx tc IIC T130 °C</td>
</tr>
<tr>
<td></td>
<td>−20 °C ≤ Ta ≤ +75 °C (−4 °F ≤ Ta ≤ +167 °F)</td>
</tr>
<tr>
<td>CEC (Canada)</td>
<td>Class I/II/III Div 2 T4 Groups ABCDEFG</td>
</tr>
<tr>
<td></td>
<td>Ex na IIC T4 Gc</td>
</tr>
<tr>
<td></td>
<td>Ex tc IIC T130 °C Gc</td>
</tr>
<tr>
<td></td>
<td>−20 °C ≤ Ta ≤ +75 °C (−4 °F ≤ Ta ≤ +167 °F)</td>
</tr>
</tbody>
</table>

Fig. 7: Certifications GTE Analog

9. Declaration of conformity of GTE Analog

Latest certificates and approvals available at: www.mtssensors.com
10. Appendix

Safety Declaration

Dear Customer,
If you return one or several sensors for checking or repair, we need you to sign a safety declaration. The purpose of this declaration is to ensure that the returned items do not contain residues of harmful substances and / or that people handling these items will not be in danger.

MTS Sensors order number: _______________________________ Sensor type(s): _______________________________
Serial number(s): _______________________________ Sensor length: _______________________________

The sensor has been in contact with the following materials:

[Blank space for listing materials]

Don’t specify chemical formulas. Please include safety data sheets of the substances, if applicable. In the event of suspected penetration of substances into the sensor, consult MTS Sensors to determine measures to be taken before shipment.

Short description of malfunction:

[Blank space for description]

Corporate information

Company: ___
Address: ___

Contact partner

Name: ___
Phone: ___
E-Mail: ___

We hereby certify that the measuring equipment has been cleaned and neutralized. Equipment handling is safe. Personnel exposure to health risks during transport and repair is excluded.

Stamp __________________ Signature __________________ Date __________

GERMANY
MTS Sensor Technologie GmbH & Co.KG
Auf dem Schüffel 9
58513 Lüdenscheid, Germany
Tel. +49-23 51-95 67 0
Fax. +49-23 51-5 64 91
info.de@mtssensors.com
www.mtssensors.com

USA
MTS Systems Corporation
Sensors Division
3001 Sheldon Drive
Cary, N.C. 27513, USA
Tel. +1 919 677-0100
Fax +1 919 677-0200
info.us@mtssensors.com
www.mtssensors.com